Thermal and nonthermal pretreatment methods for the extraction of anthocyanins: A review
Giroon Ijod
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorFarah Nurhusna Musa
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorFarooq Anwar
Department of Chemistry, University of Sargodha, Sargodha, Pakistan
Search for more papers by this authorNorhidayah Suleiman
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorNoranizan Mohd Adzahan
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Ezzat Mohamad Azman
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Correspondence
Ezzat Mohamad Azman, Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorGiroon Ijod
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorFarah Nurhusna Musa
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorFarooq Anwar
Department of Chemistry, University of Sargodha, Sargodha, Pakistan
Search for more papers by this authorNorhidayah Suleiman
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorNoranizan Mohd Adzahan
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Ezzat Mohamad Azman
Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Correspondence
Ezzat Mohamad Azman, Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorAbstract
Functional plant bioactive such as polyphenols have drawn greater interest for researchers, food industries, and consumers. Anthocyanins are popular due to its high antioxidant activity and nutra-pharmaceutical potential. As the demand for anthocyanins grows, exploring and acknowledging applications of various conventional and nonconventional means of anthocyanin extraction is important. Conventional extraction methods have some limitations in the context that these are most time-consuming, tedious, and less cost-effective as well as offer lower extraction yield and selectivity. Therefore, to encounter the limitations mentioned, pretreatments including thermal and nonthermal are applied to plant materials prior to the conventional bioactive extraction process. Thermal pretreatments include blanching, ultrasonication, microwave, and ohmic heating (OH); meanwhile, examples of nonthermal pretreatment are enzymatic, high-pressure processing (HPP), and pulsed electric field (PEF). This review is an attempt to critically summarize the applications of various pretreatment methods for improving the extraction rates and yields of anthocyanins from plant materials.
Novelty impact statement
Overall, ohmic heating (OH) appeared as the best thermal pretreatment prior to anthocyanins conventional extraction method due to rapid heating and low energy consumption. On the other hand, the most efficient nonthermal pretreatment method is high-pressure processing (HPP) due to its rapid process, as well as successfully inactivate the microbial and enzyme activities.
CONFLICT OF INTEREST
The authors declared no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
All data have been provided within the article.
REFERENCES
- Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Ol, L., Elnikeety, M. M., & Feyissa, A. H. (2018). Optimization of ohmic heating parameters for polyphenoloxidase inactivation in not-from-concentrate elstar apple juice using RSM. Journal of Food Science and Technology, 55(7), 2420–2428. https://doi.org/10.1007/s13197-018-3159-1
- Abera, G. (2019). Review on high-pressure processing of foods. Cogent Food and Agriculture, 5(1), 1568725. https://doi.org/10.1080/23311932.2019.1568725
- Adetoro, A. O., Opara, U. L., & Fawole, O. A. (2021). Effect of blanching on enzyme inactivation, physicochemical attributes and antioxidant capacity of hot-air dried pomegranate (Punica granatum L.) arils (cv. wonderful). Pro, 9(1), 1–18. https://doi.org/10.3390/pr9010025
10.3390/pr9010025 Google Scholar
- Agcam, E., Akyıldız, A., Kamat, S., & Balasubramaniam, V. M. (2021). Bioactive compounds extraction from the black carrot pomace with assistance of high pressure processing: An optimization study. Waste and Biomass Valorization, 12(11), 5959–5977. https://doi.org/10.1007/s12649-021-01431-z
- Alappat, B., & Alappat, J. (2020). Anthocyanin pigments: Beyond aesthetics. Molecules, 25(23), 5500. https://doi.org/10.3390/molecules25235500
- Álvarez, A., Poejo, J., Matias, A. A., Duarte, C. M., Cocero, M. J., & Mato, R. B. (2017). Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food and Bioproducts Processing, 106, 162–170. https://doi.org/10.1016/j.fbp.2017.09.007
- Amogne, N. Y., Ayele, D. W., & Tsigie, Y. A. (2020). Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Materials for Renewable and Sustainable Energy, 9(4), 1–16. https://doi.org/10.1007/s40243-020-00183-5
- Antony, A., & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), 2076–3417. https://doi.org/10.3390/app12042107
10.3390/app12042107 Google Scholar
- Anuyahong, T., Chusak, C., & Adisakwattana, S. (2020). Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT-Food Science and Technology, 129, 109–571. https://doi.org/10.1016/j.lwt.2020.109571
- Anwar, F., Abbas, A., Mehmood, T., Gilani, A. H., & Rehman, N. (2019). Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phytotherapy Research, 33(10), 2548–2570. https://doi.org/10.1002/ptr.6423
- Anwar, F., Zengin, G., Alkharfy, K. M., & Marcu, M. (2017). Wild rice (Zizania sp.): A potential source of valuable ingredients for nutraceuticals and functional foods. Rivista Italiana delle Sostanze Grasse, 565, 81–89.
- Arruda, H. S., Silva, E. K., Araujo, N. M. P., Pereira, G. A., Pastore, G. M., & Junior, M. R. M. (2021). Anthocyanins recovered from agri-food by-products using innovative processes: Trends, challenges, and perspectives for their application in food systems. Molecules, 26(9), 2632. https://doi.org/10.3390/molecules26092632
- Azman, E. M., Charalampopoulos, D., & Chatzifragkou, A. (2020). Acetic acid buffer as extraction medium for free and bound phenolics from dried blackcurrant (Ribes nigrum L.) skins. Journal of Food Science, 85(11), 3745–3755. https://doi.org/10.1111/1750-3841.15466
- Azman, E. M., House, A., Charalampopoulos, D., & Chatzifragkou, A. (2021). Effect of dehydration on phenolic compounds and antioxidant activity of blackcurrant (Ribes nigrum L.) pomace. International Journal of Food Science and Technology, 56(2), 600–607. https://doi.org/10.1111/ijfs.14762
- Azman, E. M., Nor, N. D. M., Charalampopoulos, D., & Chatzifragkou, A. (2022). Effect of acidified water on phenolic profile and antioxidant activity of dried blackcurrant (Ribes nigrum L.) pomace extracts. LWT, 154, 112733. https://doi.org/10.1016/j.lwt.2021.112733
- Azman, E. M., Yusof, N., Chatzifragkou, A., & Charalampopoulos, D. (2022). Stability enhancement of anthocyanins from blackcurrant (Ribes nigrum L.) pomace through intermolecular copigmentation. Molecules, 27, 5489. https://doi.org/10.3390/molecules27175489
- Baboli, Z. M., Williams, L., & Chen, G. (2020). Design of a batch ultrasonic reactor for rapid pasteurization of juices. Journal of Food Engineering, 268, 109736. https://doi.org/10.1016/j.jfoodeng.2019.109736
- Balasubramaniam, V. M., Martinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual Review of Food Science & Technology, 6, 435–462. https://doi.org/10.1146/annurev-food-022814-015539
- Bassey, E. J., Cheng, J. H., & Sun, D. W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science and Technology, 112, 137–148. https://doi.org/10.1016/j.tifs.2021.03.045
- Benchahem, S., Karrila, S. J., & Karrila, T. T. (2015). Effect of pretreatment with ultrasound on antioxidant properties of black glutinous rice water extracts. International Food Research Journal, 22(6), 2371–2380.
- Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293
- Bhat, S., Saini, C. S., Kumar, M., & Sharma, H. K. (2019). Peroxidase as indicator enzyme of blanching in bottle gourd (Lagenaria siceraria): Changes in enzyme activity, color, and morphological properties during blanching. Journal of Food Processing and Preservation, 43(8), e14017. https://doi.org/10.1111/jfpp.14017
- Blackhall, M. L., Berry, R., Davies, N. W., & Walls, J. T. (2018). Optimized extraction of anthocyanins from Reid Fruits' Prunus avium ‘Lapins’ cherries. Food Chemistry, 256, 280–285. https://doi.org/10.1016/j.foodchem.2018.02.137
- Bobinaite, R., Pataro, G., Lamanauskas, N., Satkauskas, S., Viskelis, P., & Ferrari, G. (2015). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, 52, 5898–5905. https://doi.org/10.1007/s13197-014-1668-0
- Brooks, M. S. L., & Celli, G. B. (2019). Anthocyanins from natural sources: Exploiting targeted delivery for improved health (Vol. 12). Royal Society of Chemistry.
10.1039/9781788012614 Google Scholar
- Brudzyńska, P., Sionkowska, A., & Grisel, M. (2021). Plant-derived colorants for food, cosmetic and textile industries: A review. Materials, 14(13), 3484. https://doi.org/10.3390/ma14133484
- Bukhanko, N., Attard, T., Arshadi, M., Eriksson, D., Budarin, V., Hunt, A. J., Geladi, P., Bergsten, U., & Clark, J. (2020). Extraction of cones, branches, needles and bark from Norway spruce (Picea abies) by supercritical carbon dioxide and soxhlet extractions techniques. Industrial Crops and Products, 145, 112096. https://doi.org/10.1016/j.indcrop.2020.112096
- Burton, L. (2019, November 21). How does solvent extraction works? Temarry Recycling https://resource.temarry.com/blog/how-does-solvent-extraction-work
- Cai, D., Li, X., Chen, J., Jiang, X., Ma, X., Sun, J., Tian, L., Vidyarthi, S. K., Xu, J., Pan, Z., & Bai, W. (2022). A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry, 366, 130611. https://doi.org/10.1016/j.foodchem.2021.130611
- Chauhan, O. P., & Unni, L. E. (2015). Pulsed electric field (PEF) processing of foods and its combination with electron beam processing. Woodhead Publishing Limited. https://doi.org/10.1533/9781782421085.2.157
10.1533/9781782421085.2.157 Google Scholar
- Cheng, X., Bi, L., Zhao, Z., & Chen, Y. (2015). Advances in enzyme assisted extraction of natural products. In 3rd International Conference on Material, Mechanical & Manufacturing Engineering (IC3ME 2015). Atlantis Press. https://doi.org/10.2991/ic3me-15.2015.72
10.2991/ic3me-15.2015.72 Google Scholar
- Chuyen, H. V., Nguyen, M. H., Roach, P. D., Golding, J. B., & Parks, S. E. (2018). Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science and Nutrition, 6(1), 189–196. https://doi.org/10.1002/fsn3.546
- Cortez, R., Luna-Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: Stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180–198. https://doi.org/10.1111/1541-4337.12244
- Coutinho, I. B., Freitas, A., Maçanita, A. L., & Lima, J. C. (2015). Effect of water content on the acid–base equilibrium of cyanidin-3-glucoside. Food Chemistry, 172, 476–480. https://doi.org/10.1016/j.foodchem.2014.09.060
- Dalponte Dallabona, I., de Lima, G. G., Cestaro, B. I., Tasso, I. d. S., Paiva, T. S., Laureanti, E. J. G., Jorge, L. M. d. M., da Silva, B. J. G., Helm, C. V., Mathias, A. L., & Jorge, R. M. M. (2020). Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. International Journal of Biological Macromolecules, 163, 1421–1432. https://doi.org/10.1016/j.ijbiomac.2020.07.256
- Dangles, O., & Fenger, J. A. (2018). The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules, 23(8), 1970. https://doi.org/10.3390/molecules23081970
- Darvishi, H., Koushesh Saba, M., Behroozi-Khazaei, N., & Nourbakhsh, H. (2020). Improving quality and quantity attributes of grape juice concentrate (molasses) using ohmic heating. Journal of Food Science and Technology, 57(4), 1362–1370. https://doi.org/10.1007/s13197-019-04170-1
- De Aguiar Cipriano, P., Kim, H., Fang, C., Paula Venancio, V., Mertens-Talcott, S. U., & Talcott, S. T. (2022). In vitro digestion, absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas). Food Chemistry, 374, 131076. https://doi.org/10.1016/j.foodchem.2021.131076
- Deylami, M. Z., Rahman, R. A., Tan, C. P., Bakar, J., & Olusegun, L. (2016). Effect of blanching on enzyme activity, color changes, anthocyanin stability and extractability of mangosteen pericarp: A kinetic study. Journal of Food Engineering, 178, 12–19. https://doi.org/10.1016/j.jfoodeng.2016.01.001
- Dukić, D., Mašković, P., Kurćubić, V., Milijasevic, M., & Babic, J. (2017). Conventional and unconventional extraction methods applied to the plant, Thymus serpyllum L. IOP Conference Series: Earth and Environmental Science, 85, 012064. https://doi.org/10.1088/1755-1315/85/1/012064
10.1088/1755-1315/85/1/012064 Google Scholar
- Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., & Kulma, A. (2016). The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences, 17(2), 160. https://doi.org/10.3390/ijms17020160
- Easmin, M. S., Sarker, M. Z. I., Ferdosh, S., Shamsudin, S. H., Yunus, K. B., Uddin, M. S., Sarker, M. M., Akanda, M. J., Hossain, M. S., & Khalil, H. A. (2015). Bioactive compounds and advanced processing technology: Phaleria macrocarpa (sheff.) Boerl, a review. Journal of Chemical Technology and Biotechnology, 90(6), 981–991. https://doi.org/10.1002/jctb.4603
- Echegaray, N., Munekata, P. E. S., Gullón, P., Dzuvor, C. K. O., Gullón, B., Kubi, F., & Lorenzo, J. M. (2022). Recent advances in food products fortification with anthocyanins. Critical Reviews in Food Science and Nutrition, 62(6), 1553–1567. https://doi.org/10.1080/10408398.2020.1844141
- Eker, M. E., Aaby, K., Budic-Leto, I., Brncic, S. R., El, S. N., Karakaya, S., Simsek, S., Manach, C., Wiczkowski, W., & De Pascual-Teresa, S. (2020). A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability. Food, 9(1), 2. https://doi.org/10.3390/foods9010002
- Escorsim, A. M., da Rocha, G., Vargas, J. V. C., Mariano, A. B., Ramos, L. P., Corazza, M. L., & Cordeiro, C. S. (2018). Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass and Bioenergy, 108, 470–478. https://doi.org/10.1016/j.biombioe.2017.10.035
- Espley, R. V., Leif, D., Plunkett, B., McGhie, T., Henry-Kirk, R., Hall, M., Johnston, J. W., Punter, M. P., Boldingh, H., Nardozza, S., Volz, R. K., O'Donnell, S., & Allan, A. C. (2019). Red to brown: An elevated anthocyanic response in apple drives ethylene to advance maturity and fruit flesh browning. Frontiers in Plant Science, 10, 1248. https://doi.org/10.3389/fpls.2019.01248
- Farooq, S., Shah, M. A., Siddiqui, M. W., Dar, B. N., Mir, S. A., & Ali, A. (2020). Recent trends in extraction techniques of anthocyanins from plant materials. Journal of Food Measurement and Characterization, 14(6), 3508–3519. https://doi.org/10.1007/s11694-020-00598-8
- Fernandes, F. A. N., Fonteles, T. V., Rodrigues, S., de Brito, E. S., & Tiwari, B. K. (2020). Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria cauliflora) peel: Kinetics and mathematical modeling. Journal of Food Science and Technology, 57(6), 2321–2328.
- Fernández-López, J. A., Fernández-Lledó, V., & Angosto, J. M. (2020). New insights into red plant pigments: More than just natural colorants. RSC Advances, 10(41), 24669–24682. https://doi.org/10.1039/d0ra03514
- Freitas-Sá, D. D. G. C., de Souza, R. C., de Araujo, M. C. P., Borguini, R. G., de Mattos, L. S., Pacheco, S., & Godoy, R. L. O. (2018). Effect of jabuticaba (Myrciaria jaboticaba (Vell) O. Berg) and jamelão (Syzygium cumini (L.) Skeels) peel powders as colorants on color-flavor congruence and acceptability of yogurts. LWT, 96, 215–221. https://doi.org/10.1016/j.lwt.2018.05.024
- Galaffu, N., Bortlik, K., & Michel, M. (2015). An industry perspective on natural food colour stability. In Colour additives for foods and beverages (issue 2). Elsevier Ltd.. https://doi.org/10.1016/B978-1-78242-011-8.00005-2
10.1016/B978-1-78242-011-8.00005-2 Google Scholar
- Garcia-Mendoza, M. d. P., Espinosa-Pardo, F. A., Baseggio, A. M., Barbero, G. F., Maróstica Junior, M. R., Rostagno, M. A., & Martínez, J. (2017). Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. Journal of Supercritical Fluids, 119, 9–16. https://doi.org/10.1016/j.supflu.2016.08.014
- Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R. H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of Food and Agriculture, 93(2), 368–374. https://doi.org/10.1002/jsfa.5770
- Gonçalves, A. C., Nunes, A. R., Falcão, A., Alves, G., & Silva, L. R. (2021). Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals, 14(7), 1–34. https://doi.org/10.3390/ph14070690
- González-De-peredo, A. V., Vázquez-Espinosa, M., Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Barbero, G. F., & Palma, M. (2021). Development of optimized ultrasound-assisted extraction methods for the recovery of total phenolic compounds and anthocyanins from onion bulbs. Antioxidants, 10(11), 1755. https://doi.org/10.3390/antiox10111755
- Hadidi, M., Ibarz, A., Conde, J., & Pagan, J. (2019). Optimisation of steam blanching on enzymatic activity, color and protein degradation of alfalfa (Medicago sativa) to improve some quality characteristics of its edible protein. Food Chemistry, 276, 591–598. https://doi.org/10.1016/j.foodchem.2018.10.049
- Haining, Z., & Yongkun, M. (2017). Optimisation of high hydrostatic pressure assisted extraction of anthocyanins from rabbiteye blueberry pomace. Czech Journal of Food Sciences, 35(2), 180–187. doi:10.17221/189/2016-CJFS
- Hasanaliyeva, G., Chatzidimitrou, E., Wang, J., Baranski, M., Volakakis, N., Seal, C., Rosa, E. A., Iversen, P. O., Vigar, V., Barkla, B., Leifert, C., & Rempelos, L. (2020). Effects of production region, production systems and grape type/variety on nutritional quality parameters of table grapes; results from a UK retail survey. Food, 9(12), 1874. https://doi.org/10.3390/foods9121874
- He, Y., Wen, L., Liu, J., Li, Y., Zheng, F., Min, W., Yue, H., & Pan, P. (2018). Optimisation of pulsed electric fields extraction of anthocyanin from Beibinghong Vitis Amurensis Rupr. Natural Product Research, 32(1), 23–29. https://doi.org/10.1080/14786419.2017.1324963
- Hosseini, S., Gharachorloo, M., Ghiassi-Tarzi, B., & Ghavami, M. (2016). Evaluation of the organic acids ability for extraction of anthocyanins and phenolic compounds from different sources and their degradation kinetics during cold storage. Polish Journal of Food and Nutrition Sciences, 66(4), 261–269. https://doi.org/10.1515/pjfns-2015-0057
- Huang, Y., Zhou, S., Zhao, G., & Ye, F. (2021). Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends in Food Science and Technology, 116, 1141–1154. https://doi.org/10.1016/j.tifs.2021.09.013
- Igwe, E. O., Charlton, K. E., & Probst, Y. C. (2019). Usual dietary anthocyanin intake, sources and their association with blood pressure in a representative sample of Australian adults. Journal of Human Nutrition and Dietetics, 32(5), 578–590. https://doi.org/10.1111/jhn.12647
- Jiang, Q. X., Ning, K. L., Yu, D. W., Xu, Y. S., Wang, B., Yang, F., Gao, P., & Xia, W. S. (2020). Effects of blanching on extraction and stability of anthocyanins from blueberry peel. Journal of Food Measurement and Characterization, 14(5), 2854–2861. https://doi.org/10.1007/s11694-020-00530-0
- Jiao, Y., Zhang, Y., He, Z., Zhai, W., Gong, H., & Yang, Z. (2016). Effect of ferulic acid on the formation of pyranoanthocyanins from purple corn (Zea mays L.) cob in a model system and their effects on color. International Journal of Food Properties, 19(4), 847–858. https://doi.org/10.1080/10942912.2015.1050500
- Jiménez-González, O., & Guerrero-Beltrán, J. Á. (2021). Extraction, microencapsulation, color properties, and experimental design of natural pigments obtained by spray drying. Food Engineering Reviews, 13(4), 769–811. https://doi.org/10.1007/s12393-021-09288-7
- Joannes, C., Sipaut, C. S., Dayou, J., Yasir, S. M., & Mansa, R. F. (2015). The potential of using pulsed electric field (PEF) technology as the cell disruption method to extract lipid from microalgae for biodiesel production. International Journal of Renewable Energy Research (IJRER), 5(2), 598–621 https://dergipark.org.tr/en/pub/ijrer/issue/16071/167979
- Kaur, N., & Singh, A. K. (2016). Ohmic heating: Concept and applications—A review. Critical Reviews in Food Science and Nutrition, 56(14), 2338–2351. https://doi.org/10.1080/10408398.2013.835303
- Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61(1), 136–1779. https://doi.org/10.1080/16546628.2017.1361779
- Kinematics. (2021, September 7). How batch processing differs from continuous flow processing. General Kinematics https://www.generalkinematics.com/blog/batch-processing-vs-continuous-flow/
- Korma, S. A., Kamal-Alahmad, A. A., Shoaib, M., Abed, S. M., Yves, H., Nsor-Atindana, J., & Qin, J. (2016). Application of pulsed electric field technology in apple juice processing. Austin Journal of Nutrition and Food Sciences, 4(2), 1080.
- Kumar, M., Dahuja, A., Sachdev, A., Kaur, C., Varghese, E., Saha, S., & Sairam, K. V. S. S. (2019). Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. International Journal of Biological Macromolecules, 135, 1070–1081. https://doi.org/10.1016/j.ijbiomac.2019.06.034
- Kutlu, N., Isci, A., Sakiyan, O., & Yilmaz, A. E. (2021). Effect of ohmic heating on ultrasound extraction of phenolic compounds from cornelian cherry (Cornus mas). Journal of Food Processing and Preservation, 45(10), e15818. https://doi.org/10.1111/jfpp.15818
- Lama-Muñoz, A., Contreras, M. d. M., Espínola, F., Moya, M., Romero, I., & Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320, 126626. https://doi.org/10.1016/j.foodchem.2020.126626
- Leong, S. Y., Burritt, D. J., & Oey, I. (2016). Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chemistry, 196, 833–841. https://doi.org/10.1016/j.foodchem.2015.10.025
- Liu, S., Chang, X., Liu, X., & Shen, Z. (2016). Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chemistry, 212, 87–95. https://doi.org/10.1016/j.foodchem.2016.05.146
- Liu, Y., Liu, Y., Tao, C., Liu, M., Pan, Y., & Lv, Z. (2018). Effect of temperature and pH on stability of anthocyanin obtained from blueberry. Journal of Food Measurement and Characterization, 12(3), 1744–1753. https://doi.org/10.1007/s11694-018-9789-1
- Liu, Y., Tikunov, Y., Schouten, R. E., Marcelis, L. F. M., Visser, R. G. F., & Bovy, A. (2018). Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A review. Frontiers in Chemistry, 6, 52. https://doi.org/10.3389/fchem.2018.00052
- Liu, Z., Esveld, E., Vincken, J. P., & Bruins, M. E. (2019). Pulsed electric field as an alternative pre-treatment for drying to enhance polyphenol extraction from fresh tea leaves. Food and Bioprocess Technology, 12(1), 183–192. https://doi.org/10.1007/s11947-018-2199-x
- Lončarić, A., Celeiro, M., Jozinović, A., Jelinić, J., Kovač, T., Jokić, S., Babić, J., Moslavac, T., Zavadlav, S., & Lores, M. (2020). Green extraction methods for extraction of polyphenolic compounds from blueberry pomace. Food, 9(11), 1521. https://doi.org/10.3390/foods9111521
- Mahmudatussa'Adah, A., Patriasih, R., Maulani, R. R., & Nurani, A. S. (2019). Effect of blanching pre-treatment on colour and anthocyanin of dried slice purple sweet potato (Ipomoea batatas L). Journal of Physics: Conference Series, 1402(5), 055080. https://doi.org/10.1088/1742-6596/1402/5/055080
10.1088/1742-6596/1402/5/055080 Google Scholar
- Mäkilä, L., Laaksonen, O., Kallio, H., & Yang, B. (2017). Effect of processing technologies and storage conditions on stability of black currant juices with special focus on phenolic compounds and sensory properties. Food Chemistry, 221, 422–430. https://doi.org/10.1016/j.foodchem.2016.10.079
- Mane, S., Bremner, D. H., Tziboula-Clarke, A., & Lemos, M. A. (2015). Effect of ultrasound on the extraction of total anthocyanins from Purple Majesty potato. Ultrasonics Sonochemistry, 27, 509–514. https://doi.org/10.1016/j.ultsonch.2015.06.021
- Marathe, S. J., Jadhav, S. B., Bankar, S. B., Dubey, K. K., & Singhal, R. S. (2019). Improvements in the extraction of bioactive compounds by enzymes. Current Opinion in Food Science, 25, 62–72. https://doi.org/10.1016/j.cofs.2019.02.009
- Marszałek, K., Woźniak, Ł., Skąpska, S., & Mitek, M. (2017). High pressure processing and thermal pasteurization of strawberry purée: Quality parameters and shelf life evaluation during cold storage. Journal of Food Science and Technology, 54(3), 832–841. https://doi.org/10.1007/s13197-017-2529-4
- Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. https://doi.org/10.3390/molecules25173809
- Mazza, G., & Miniati, E. (2018). Anthocyanins in fruits, vegetables, and grains. CRC Press. https://doi.org/10.1201/9781351069700
10.1201/9781351069700 Google Scholar
- Mazzutti, S., Pedrosa, R. C., & Ferreira, S. R. S. (2021). Green processes in Foodomics. Supercritical Fluid Extraction of Bioactives, 2021, 725–743. https://doi.org/10.1016/B978-0-08-100596-5.22816-3
10.1016/B978?0?08?100596?5.22816?3 Google Scholar
- Medina-Meza, I. G., Boioli, P., & Barbosa-Canovas, G. V. (2016). Assessment of the effects of ultrasonics and pulsed electric fields on nutritional and rheological properties of raspberry and blueberry purees. Food and Bioprocess Technology, 9, 520–531. https://doi.org/10.1007/s11947-015-1642-5
- Monroy, Y. M., Rodrigues, R. A. F., Sartoratto, A., & Cabral, F. A. (2016). Extraction of bioactive compounds from cob and pericarp of purple corn (Zea mays L.) by sequential extraction in fixed bed extractor using supercritical CO2, ethanol, and water as solvents. Journal of Supercritical Fluids, 107, 250–259. https://doi.org/10.1016/j.supflu.2015.09.020
- Montibeller, M. J., de Lima Monteiro, P., Tupuna-Yerovi, D. S., Rios, A. d. O., & Manfroi, V. (2018). Stability assessment of anthocyanins obtained from skin grape applied in kefir and carbonated water as a natural colorant. Journal of Food Processing and Preservation, 42(8), 1–10. https://doi.org/10.1111/jfpp.13698
- Moshfeghi, N., Mahdavi, O., Shahhosseini, F., Malekifar, S., & Taghizadeh, S. K. (2013). Introducing a new natural product from dragon fruit into the market. International Journal of Research and Reviews in Applied Sciences, 15(2), 269–272.
- Nabi, B. G., Mukhtar, K., Arshad, R. N., Radicetti, E., Tedeschi, P., Shahbaz, M. U., Walayat, N., Nawaz, A., Inam-Ur-Raheem, M., & Aadil, R. M. (2021). High-pressure processing for sustainable food supply. Sustainability, 13(24), 13908. https://doi.org/10.3390/su132413908
- Nair, G. R., Divya, V. R., Prasannan, L., Habeeba, V., Prince, M. V., & Raghavan, G. V. (2014). Ohmic heating as a pre-treatment in solvent extraction of rice bran. Journal of Food Science and Technology, 51(10), 2692–2698. https://doi.org/10.1007/s13197-012-0764-2
- Naveena, B., & Nagaraju, M. (2020). Review on principles, effects, advantages and disadvantages of high pressure processing of food. International Journal of Chemical Studies, 8(2), 2964–2967. https://doi.org/10.22271/chemi.2020.v8.i2at.9202
10.22271/chemi.2020.v8.i2at.9202 Google Scholar
- Ngo, T. V., Scarlett, C. J., Bowyer, M. C., Ngo, P. D., & Vuong, Q. V. (2017). Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality, 2017, 1–8. https://doi.org/10.1155/2017/9305047
- Noreña, C. Z., & Rigon, R. T. (2018). Effect of blanching on enzyme activity and bioactive compounds of blackberry. Brazilian Archives of Biology and Technology, 61, 1–13. https://doi.org/10.1590/1678-4324-2018180018
- Nouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm's leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166–176. https://doi.org/10.1016/j.indcrop.2015.12.032
- Nunes, A. N., Borges, A., Matias, A. A., Bronze, M. R., & Oliveira, J. (2022). Alternative extraction and downstream purification processes for anthocyanins. Molecules, 27(2), 1–24. https://doi.org/10.3390/molecules27020368
- Oren-Shamir, M. (2009). Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Science, 177(4), 310–316. https://doi.org/10.1016/j.plantsci.2009.06.015
- Padmanabhan, P., Mizran, A., Sullivan, J. A., & Paliyath, G. (2016). Strawberries. In Encyclopedia of food and health (pp. 193–198). Academic Press.
10.1016/B978-0-12-384947-2.00667-X Google Scholar
- Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., & Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Frontiers in Nutrition, 7, 60. https://doi.org/10.3389/fnut.2020.00060
- Parreño, W. C., & Torres, M. D. Á. (2016). Quality and safety of frozen vegetables. In D. W. Sun (Ed.), Handbook of frozen food processing and packaging. CRC Press.
- Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science and Technology, 21(1), 3–11. https://doi.org/10.1016/j.tifs.2009.07.004
- Pereira, R. N., Coelho, M. I., Genisheva, Z., Fernandes, J. M., Vicente, A. A., & Pintado, M. E. (2020). Using ohmic heating effect on grape skins as a pretreatment for anthocyanins extraction. Food and Bioproducts Processing, 124, 320–328. https://doi.org/10.1016/j.fbp.2020.09.009
- Pham, H. N. T., Nguyen, V. T., Vuong, Q. V., Bowyer, M. C., & Scarlett, C. J. (2015). Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies, 3(4), 285–301. https://doi.org/10.3390/technologies3040285
- Phong, W. N., Show, P. L., Ling, T. C., Juan, J. C., Ng, E. P., & Chang, J. S. (2018). Mild cell disruption methods for bio-functional proteins recovery from microalgae—Recent developments and future perspectives. Algal Research, 31, 506–516. https://doi.org/10.1016/j.algal.2017.04.005
10.1016/j.algal.2017.04.005 Google Scholar
- Pojer, E., Mattivi, F., Johnson, D., & Stockley, C. S. (2013). The case for anthocyanin consumption to promote human health: A review. Comprehensive Reviews in Food Science and Food Safety, 12(5), 483–508. https://doi.org/10.1111/1541-4337.12024
- Putnik, P., Bursać Kovačević, D., Radojčin, M., & Dragović-Uzelac, V. (2016). Influence of acidity and extraction time on the recovery of flavonoids from grape skin pomace optimized by response surface methodology. Chemical and Biochemical Engineering Quarterly, 30(4), 455–464. https://doi.org/10.15255/CABEQ.2016.914
- Rakić, V., & Poklar Ulrih, N. (2021). Influence of pH on color variation and stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution. CyTA-Journal of Food, 19(1), 174–182. https://doi.org/10.1080/19476337.2021.1874539
- Ranveer, R. C., Nanadane, A. S., Ganorkar, P. M., & Sahoo, A. K. (2020). Enzyme-assisted extraction of anthocyanin from kokum (Garcinia indica Choisy) rinds. European Journal of Nutrition and Food Safety, 12, 125–133. https://doi.org/10.9734/EJNFS/2020/v12i1030309
10.9734/ejnfs/2020/v12i1030309 Google Scholar
- Rasul, G. M. (2018). Conventional extraction methods use in medicinal plants, their advantages and disadvantages. International Journal of Basic Sciences and Applied Computing, 6, 10–14.
- Ricci, A., Parpinello, G. P., & Versari, A. (2018). Recent advances and applications of pulsed electric fields (PEF) to improve polyphenol extraction and color release during red winemaking. Beverages, 4(1), 18. https://doi.org/10.3390/beverages4010018
- Romero-Díez, R., Matos, M., Rodrigues, L., Bronze, M. R., Rodríguez-Rojo, S., Cocero, M., & Matias, A. (2019). Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees. Food Chemistry, 272, 258–266. https://doi.org/10.1016/j.foodchem.2018.08.016
- Saikaew, K., Lertrat, K., Meenune, M., & Tangwongchai, R. (2018). Effect of high-pressure processing on colour, phytochemical contents and antioxidant activities of purple waxy corn (Zea mays L. var. ceratina) kernels. Food Chemistry, 243, 328–337. https://doi.org/10.1016/j.foodchem.2017.09.136
- Sampaio, S. L., Lonchamp, J., Dias, M. I., Liddle, C., Petropoulos, S. A., Glamočlija, J., Alexopoulos, A., Santos-Buelga, C., Ferreira, I., & Barros, L. (2021). Anthocyanin-rich extracts from purple and red potatoes as natural colourants: Bioactive properties, application in a soft drink formulation and sensory analysis. Food Chemistry, 342, 128526. https://doi.org/10.1016/j.foodchem.2020.128526
- Sarkis, J. R., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. (2013). Effects of ohmic and conventional heating on anthocyanin degradation during the processing of blueberry pulp. LWT-Food Science & Technology, 51(1), 79–85. https://doi.org/10.1016/j.lwt.2012.10.024
- Sati, P., Dhyani, P., Bhatt, I. D., & Pandey, A. (2019). Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. Journal of Traditional and Complementary Medicine, 9(1), 15–23. https://doi.org/10.1016/j.jtcme.2017.10.003
- Senevirathna, S. S., Ramli, N. S., Azman, E. M., Juhari, N. H., & Karim, R. (2022). Production of innovative antioxidant-rich and gluten-free extruded puffed breakfast cereals from purple sweet potato (Ipomoea batatas L.) and red rice using a mixture design approach. Journal of Food Processing and Preservation, 00, e16666. https://doi.org/10.1111/jfpp.16666
- Shao, L., Zhao, Y., Zou, B., Li, X., & Dai, R. (2021). Ohmic heating in fruit and vegetable processing: Quality characteristics, enzyme inactivation, challenges and prospective. Trends in Food Science and Technology, 118, 601–616. https://doi.org/10.1016/j.tifs.2021.10.009
- Sharif, I., Adewale, P., Dalli, S. S., & Rakshit, S. (2018). Microwave pretreatment and optimization of osmotic dehydration of wild blueberries using response surface methodology. Food Chemistry, 269, 300–310. https://doi.org/10.1016/j.foodchem.2018.06.087
- Singh, S., Gaikwad, K. K., & Lee, Y. S. (2018). Anthocyanin – A natural dye for smart food packaging systems. Korean Journal of Packaging Science and Technology, 24(3), 167–180. https://doi.org/10.20909/kopast.2018.24.3.167
10.20909/kopast.2018.24.3.167 Google Scholar
- Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008
- Sipahli, S., Mohanlall, V., & Mellem, J. J. (2017). Stability and degradation kinetics of crude anthocyanin extracts from H. sabdariffa. Food Science and Technology, 37(2), 209–215. https://doi.org/10.1590/1678-457X.14216
- Soto, M., Acosta, O., Vaillant, F., & Pérez, A. (2016). Effects of mechanical and enzymatic pretreatments on extraction of polyphenols from blackberry fruits. Journal of Food Process Engineering, 39(5), 492–500. https://doi.org/10.1111/jfpe.12240
- Sugiharto, K., Rahman, A. N. F., & Zainal, Z. (2020). The effect of solvent type and extraction duration on purple corn anthocyanin compounds (Zea mays L). IOP Conference Series: Earth and Environmental Science, 486(1), 012055. https://doi.org/10.1088/1755-1315/486/1/012055
10.1088/1755-1315/486/1/012055 Google Scholar
- Tamkutė, L., Liepuoniūtė, R., Pukalskienė, M., & Venskutonis, P. R. (2020). Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2 and pressurized liquid extraction. Journal of Supercritical Fluids, 159, 104755. https://doi.org/10.1016/j.supflu.2020.104755
- Tensiska, T., Marta, H., Cahyana, Y., & Amirah, N. S. (2017). Application of encapsulated anthocyanin pigments from purple sweet potato (Ipomoea batatas L.) in jelly drink. KnE. Life Sciences, 2, 482–493. https://doi.org/10.18502/kls.v2i6.1069
10.18502/kls.v2i6.1069 Google Scholar
- Tobgay, U., Boonyanuphong, P., & Meunprasertdee, P. (2020). Comparison of hot water and methanol extraction combined with ultrasonic pretreatment on antioxidant properties of two pigmented rice cultivars. Food Research, 4(2), 547–556. https://doi.org/10.26656/fr.2017.4(2).330
10.26656/fr.2017.4(2).330 Google Scholar
- Trolles-Cavalcante, S. Y. T., Dutta, A., Sofer, Z., & Borenstein, A. (2021). The effectiveness of Soxhlet extraction as a simple method for GO rinsing as a precursor of high-quality graphene. Nanoscale Advances, 3(18), 5292–5300. https://doi.org/10.1039/D1NA00382H
- Tsikrika, K., Muldoon, A., O'Brien, N. M., & Rai, D. K. (2021). High-pressure processing on whole and peeled potatoes: Influence on polyphenol oxidase, antioxidants, and Glycaemic indices. Food, 10, 2425. https://doi.org/10.3390/foods10102425
- West, M. E., & Mauer, L. J. (2013). Color and chemical stability of a variety of anthocyanins and ascorbic acid in solution and powder forms. Journal of Agricultural and Food Chemistry, 61(17), 4169–4179. https://doi.org/10.1021/jf400608b
- Wong, C. (2022, June 27). The benefits of anthocyanins. Verywell Health https://www.verywellhealth.com/the-scoop-on-anthocyanins-89522
- Xu, J. (2015). Microwave pretreatment. In Pretreatment of biomass (pp. 157–172). Elsevier. https://doi.org/10.1016/B978-0-12-800080-9.00009-8
10.1016/B978-0-12-800080-9.00009-8 Google Scholar
- Yang, J., He, X., & Zhao, D. J. (2013). Factors affecting phytochemical stability. In B. K. Tiwari, N. P. Brunton, & C. S. Brennan (Eds.), Handbook of plant food phytochemicals: Sources, stability and extraction (pp. 332–374). Wiley. https://doi.org/10.1002/9781118464717.ch15
10.1002/9781118464717.ch15 Google Scholar
- Zhang, L., Liao, L., Qiao, Y., Wang, C., Shi, D., An, K., & Hu, J. (2020). Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying. Food Chemistry, 303, 125386. https://doi.org/10.1016/j.foodchem.2019.125386
- Zhang, Y., Sun, Y., Zhang, H., Mai, Q., Zhang, B., Li, H., & Deng, Z. (2020). The degradation rules of anthocyanins from eggplant peel and antioxidant capacity in fortified model food system during the thermal treatments. Food Bioscience, 38, 100701. https://doi.org/10.1016/j.fbio.2020.100701
- Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science and Technology, 54(1), 1–13. https://doi.org/10.1111/ijfs.13903