Improving the quality characteristics of low fat toffee by using mango kernel fat, pectin, and high-speed homogenizer
Corresponding Author
Dina El-Sayed Helmy Azab
Department of Food Technology, Food Industries and Nutrition Institute, National Research Centre, Giza, Egypt
Correspondence
Dina El-Sayed Helmy Azab, Department of Food Technology, Food Industries and Nutrition Institute,National Research Centre, Giza 12622, Egypt.
Email: [email protected]
Search for more papers by this authorRania I. M. Almoselhy
Oils and Fats Research Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
Search for more papers by this authorMarwa Hanafy Mahmoud
Department of Food Technology, Food Industries and Nutrition Institute, National Research Centre, Giza, Egypt
Search for more papers by this authorCorresponding Author
Dina El-Sayed Helmy Azab
Department of Food Technology, Food Industries and Nutrition Institute, National Research Centre, Giza, Egypt
Correspondence
Dina El-Sayed Helmy Azab, Department of Food Technology, Food Industries and Nutrition Institute,National Research Centre, Giza 12622, Egypt.
Email: [email protected]
Search for more papers by this authorRania I. M. Almoselhy
Oils and Fats Research Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
Search for more papers by this authorMarwa Hanafy Mahmoud
Department of Food Technology, Food Industries and Nutrition Institute, National Research Centre, Giza, Egypt
Search for more papers by this authorAbstract
One of the promising approaches in food sector is the valorization of food by-products into nutritional ingredients. This study aimed to improve the quality of toffee by adding mango kernel fat (MKF) as a butter replacer (50%), pectin (1%) using the high-speed homogenization (HSH). Fatty acid composition, melting point, non-enzymatic browning index (NEBI), texture profile analysis (TPA) were investigated. Results showed the oxidative stability of MKF recorded exceeding value (400 h) indicating great stability compared to butter (21 h), using HSH technique with the addition of pectin and mango fat to toffee induced high-quality characteristics. Also, an increase in stability of toffee blends (zeta potential: −80 mV), melting point (34.129°C), TPA of the blends was compatible with full butter TPA with high texture, and high acceptability was observed. Results demonstrate that toffee with MKF and using HSH could improve the quality characteristics of toffee as well as have good nutritional aspects.
Novelty impact statement
Improving the quality attributes of toffee confectionery by reducing fat in the recipe as substituted using a high-speed homogenization technique, with mango fat and/or pectin as a fat replacer. They could make toffee lower in fat content, healthier, cheaper, and with the same quality as full-fat toffee. It will valorize the mango fat from mango by-products into nutritional ingredients.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available within the article.
REFERENCES
- Abdelsalam, N. R., Ali, H. M., Salem, M. Z. M., Ibrahem, E. G., & Elshikh, M. S. (2018). Genetic and morphological characterization of Mangiferaindica L. Growing in Egypt, Hort Science, 53, 1266–1270. https://doi.org/10.21273/HORTSCI13084-18
10.21273/HORTSCI13084?18 Google Scholar
- Adilah, Z. A. M., Jamilah, B., & Hanani, Z. A. N. (2018). Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids, 74, 207–218. https://doi.org/10.1016/j.foodhyd.2017.08.017
- Akhter, S., McDonald, M., & Marriott, R. (2016). Mangiferasylvatica (Wild Mango): A new cocoa butter alternative. Scientific Reports, 6, 32050. https://doi.org/10.1038/srep32050
- Akther, S., Alim, M. A., Badsha, M. R., Matin, A., Ahmad, M., & Hoque, S. M. Z. (2020). Formulation and quality evaluation of instant mango drink powder. Food Research, 4(4), 1287–1296. https://doi.org/10.26656/fr.2017.4(4).077
10.26656/fr.2017.4(4).077 Google Scholar
- Almoselhy, R. I. M. (2021). Comparative study of vegetable oils oxidative stability using dsc and rancimat methods. Egyptian Journal of Chemistry, 64(1), 299–312. https://doi.org/10.21608/ejchem.2021.51238.3051
- Almoselhy, R. I. M., Eid, M. M., Abd El-Baset, W. S., & Aboelhassan, A. F. A. (2021). Determination of 3-MCPD in some edible oils using GC-MS/MS. Egyptian Journal of Chemistry, 64(3), 1639–1652. https://doi.org/10.21608/ejchem.2021.64084.3373
- Almoselhy, R. I. M., Eid, M. M., Abd-Elmageed, S. M. M., & Youness, R. A. (2020). Using nanotechnology in bleaching vegetable oils. Egyptian Journal of Chemistry, 63(7), 2699–2706. https://doi.org/10.21608/ejchem.2020.23625.2407
- Altınok, E., Palabiyik, I., Gunes, R., Toker, O. S., Konar, N., & Kurultay, S. (2020). Valorisation of grape by-products as a bulking agent in soft candies: Effect of particle size. LWT, 118, 108776. https://doi.org/10.1016/j.lwt.2019.108776
- AOAC. (2016). AOAC Official Method 965.33. Official Methods of Analysis of AOAC International—20th Edition.
- Azab, D. E. H., Heikal, Y. A., Salaheldin, T. A., Hassan, A. A., & Abu- Salem, F. M. (2019). Nano formulated soy proteins for improvement of beef burgers quality. Egyptian Journal of Chemistry, 62(7), 1167–1184. https://doi.org/10.21608/ejchem.2019.6867.1573
- Bourne, M. C. (1973). Use of the penetrometer for deformation testing of foods. Journal of Food Science, 38, 720–721.
- Çoban, B., Bilgin, B., Yurt, B., Kopuk, B., Atik, D. S., & Palabiyik, I. (2021). Utilization of the barberry extract in the confectionery products. LWT, 145, 111362. https://doi.org/10.1016/j.lwt.2021.111362
- Dranca, F., Vargas, M., & Oroian, M. (2020). Physicochemical properties of pectin from Malusdomestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocolloids, 100, 105383. https://doi.org/10.1016/j.foodhyd.2019.105383
- Enríquez-Valencia, S. A., Ayala-Zavala, J. F., González-Aguilar, G. A., & López-Martínez, L. X. (2021). Chapter 2—Valorization of industrial by-products and waste from tropical fruits for the recovery of bioactive compounds, recent advances, and future perspectives. In R. Bhat (Ed.), Valorization of agri-food wastes and by-products (pp. 29–46). Academic Press. https://doi.org/10.1016/B978-0-12-824044-1.00027-1
10.1016/B978-0-12-824044-1.00027-1 Google Scholar
- Fierascu, R. C., Sieniawska, E., Ortan, A., Fierascu, I., & Xiao, J. (2020). Fruits by-products—A source of valuable active principles. A short review. Frontiers in Bioengineering and Biotechnology, 8, 1–8. https://doi.org/10.3389/fbioe.2020.00319
- Govindarajan, V. S., Ranganna, S., Ramana, K. V. R., & Kefford, J. F. (1984). Citrus fruits. Part II. Chemistry, technology, and quality evaluation. C. quality evaluation. Critical Reviews in Food Science & Nutrition, 20(2), 73–122. https://doi.org/10.1080/10408398309527374
- Gutiérrez, F. (1989). Determinación de la estabilidadoxidativa de aceites de olive vírgenes: Comparación entre el métododel Oxigeno Activo (A.O.M.) y el método Rancimat. Grasasy Aceites, 40, 1–5.
- Gutiérrez-luna, K., Ansorena, D., & Astiasarán, I. (2022). Use of hydrocolloids and vegetable oils for the formulation of a butter replacer: Optimization and oxidative stability. LWT, 153, 112538. https://doi.org/10.1016/j.lwt.2021.112538
- Hannum, M. E., Forzley, S., Popper, R., & Simons, C. T. (2021). Application of the engagement questionnaire (eq) to compare methodological differences in sensory and consumer testing. Food Research International, 140, 110083. https://doi.org/10.1016/j.foodres.2020.110083
- Hannum, M. E., & Simons, C. T. (2020). Development of the engagement questionnaire (EQ): A tool to measure panelist engagement during sensory and consumer evaluations. Food Quality and Preference, 81, 103840. https://doi.org/10.1016/j.foodqual.2019.103840
- Hartel, R. W., von Elbe, J. H., & Hofberger, R. (2018). Caramel, fudge and toffee. In Confectionery science and technology (pp. 273–299). Springer. https://doi.org/10.1007/978-3-319-61742-8_10
10.1007/978-3-319-61742-8_10 Google Scholar
- ISO 12966-2:2017. (2017). Animal and vegetable oils and fats—Gas chromatography of fatty acid methyl esters—Part 2: Preparation of methyl esters of fatty acids.
- ISO 660:2020. (2020). Animal and vegetable oils and fats—Determination of acid value and acidity.
- Jahurul, M. H. A., Zaidul, I. S. M., Norulaini, N. A. N., Sahena, F., Jinap, S., Azmir, J., Sharif, K. M., & Omar, A. K. M. (2013). Cocoa butter fats and possibilities of substitution in food products concerning cocoa varieties, alternative sources, extraction methods, composition, and characteristics. Journal of Food Engineering, 117, 467–476. https://doi.org/10.1016/j.jfoodeng.2012.09.024
- Jahurul, M. H. A., Zaidul, I. S. M., Norulaini, N. A. N., Sahena, F., Kamaruzzaman, B. Y., Ghafoor, K., & Omar, A. K. M. (2014). Cocoa butter replacers from blends of mango seed fat extracted by supercritical carbon dioxide and palm stearin. Food Research International, 65(C), 401–406. https://doi.org/10.1016/j.foodres.2014.06.039
- Jiao, J., Gai, Q. Y., Luo, M., Peng, X., Zhao, C. J., Fu, Y. J., & Ma, W. (2015). Direct determination of astragalosides and isoflavonoids from fresh Astragalus membranaceus hairy root cultures by high-speed homogenization coupled with cavitation-accelerated extraction followed by liquid chromatography-tandem mass spectrometry. RSC Advances, 5(44), 34672–34681. https://doi.org/10.1039/C5RA04291G
- Kalik, M., Krstonosic, V., Hadnadev, M., Gregersen, S. B., Ljeskovic, N. J., & Wiking, L. (2018). Impact of different sugar and cocoa powder particle sizes on crystallization of fat used for the production of confectionery products. Journal of Food Processing and Preservation, 42, e13848. https://doi.org/10.1111/jfpp.13848
- Kim, J., Kim, D. N., Lee, S. H., Yoo, S. H., & Lee, S. (2010). Correlation of fatty acid composition of vegetable oils with rheological behaviour and oil uptake. Food Chemistry, 118(2), 398–402. https://doi.org/10.1016/j.foodchem.2009.05.011
- Kyriakidis, N. B., & Katsiloulis, T. (2000). Calculation of iodine value from measurements of fatty acid methyl esters of some oils: Comparison with the relevant American oil Chemists Society method. Journal of the American Oil Chemists' Society, 77, 1235–1238. https://doi.org/10.1007/s11746-000-0193-3
- Lazari, M., Aguiar-Oliveira, E., Soares de Oliveira, D., Kamimura, E. S., & Maldonado, R. R. (2019). Production of low-calorie ice cream utilizing apple peel and pulp. Journal of Culinary Science & Technology, 17(6), 481–490. https://doi.org/10.1080/15428052.2018.1489323
- Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., & Mazoyer, J. (2003). Emulsion stabilizing properties of pectin. Food Hydrocolloids, 17(4), 455–462. https://doi.org/10.1016/S0268-005X(03)00027-4
- Lieb, V. M., Schuster, L. K., Kronmüller, A., Schmarr, H. G., Carle, R., & Steingass, C. B. (2019). Fatty acids, triacylglycerols, and thermal behaviour of various mango (Mangifera indica L.) kernel fats. Food Research International, 116, 527–537. https://doi.org/10.1016/j.foodres.2018.08.070
- Liu, J., Bi, J., Liu, X., Liu, D., Verkerk, R., Dekker, M., Lyu, J., & Wu, X. (2022). Modelling and optimization of high-pressure homogenization of not-from-concentrate juice: Achieving better juice quality using sustainable production. Food Chemistry, 370, 131058. https://doi.org/10.1016/j.foodchem.2021.131058
- Luo, J., Xu, Y., & Fan, Y. (2019). Upgrading pectin production from apple pomace by acetic acid extraction. Applied Biochemistry and Biotechnology, 187, 1300–1311. https://doi.org/10.1007/s12010-018-2893-1
- Mahmoud, M. H., Mehaya, F. M., & Abu-Salem, F. M. (2020). Encapsulation of pomegranate seed oil using w/o/w nano-emulsion technique followed by spray drying and its application in jelly form. Journal of Microbiology, Biotechnology & Food Sciences, 10(3), 449–453. https://doi.org/10.15414/jmbfs.2020.10.3.449-453
- Mahmoud, M. H., Seleet, F. L., & Foda, M. I. (2017). Effect of different concentration techniques on some properties of fresh and stored pomegranate juice. Asian Journal of Scientific Research, 10(4), 290–298. doi:10.3923/ajsr.2017.290.298
- Mahmoud, M. H., Wahba, H. M. A., Mahmoud, M. H., & Badawy, I. H. (2019). Newly formulated antioxidant rich dietary supplement in jelly form for alleviation of liver diseases in rats. Journal of Biological Sciences, 17(7), 334–346. https://doi.org/10.3923/jbs.2017.334.346
10.3923/jbs.2017.334.346 Google Scholar
- Manickavasagan, A., Ganeshmoorthy, K., Claereboudt, M., Al-Yahyai, R., & Khriji, L. (2014). Non-destructive measurement of total soluble solid (tss) content of dates using near infrared (nir) imaging. Emirates Journal of Food and Agriculture, 26(11), 970–976. https://doi.org/10.9755/ejfa.v26i11.18102
- Melo, P. E. F., Silva, A. P. M., Marques, F. P., Ribeiro, P. R. V., Filho, M. D. S. M., Brito, E. S., Lima, J. R., & Azeredo, H. M. C. (2019). Antioxidant films from mango kernel components. Food Hydrocolloids, 95, 487–495. https://doi.org/10.1016/j.foodhyd.2019.04.061
- Mihailović, N. R., Mihailović, V. B., Kreft, S., Ćirić, A. R., Joksović, L. G., & Đurđević, P. T. (2018). Analysis of phenolics in the peel and pulp of wild apples (Malus sylvestris L.) Mill. Journal of Food Composition and Analysis, 67, 1–9. https://doi.org/10.1016/j.jfca.2017.11.007
- Mulia, K., Safiera, A., Pane, I. F., & Krisanti, E. A. (2019). Effect of high speed homogenizer speed on particle size of polylactic acid. Journal of Physics: Conference Series, 1198, 062006, 1–5. https://doi.org/10.1088/1742-6596/1198/6/062006
- Mutlu, C., Tontul, S. A., & Erbaş, M. (2018). Production of a minimally processed jelly candy for children using honey instead of sugar. LWT, 93, 499–505. https://doi.org/10.1016/j.lwt.2018.03.064
- Nadeem, M., Imran, M., Iqbal, Z., Abbas, N., & Mahmud, A. (2017). Enhancement of the oxidative stability of butter oil by blending with mango (Mangifera indica L.) kernel fat in ambient and accelerated oxidation. Journal of Food Processing and Preservation, 41, e12957. https://doi.org/10.1111/jfpp.12957
- Naeem, A., Shabbir, M. A., Khan, M. R., Ahmad, N., & Roberts, T. H. (2019). Mango kernel fat as a cocoa butter substitute suitable for the tropics. Journal of Food Science, 84(6), 1315–1321. https://doi.org/10.1111/1750-3841.14614
- Namira, Z. R., Paramita, V., & Kusumayanti, H. (2021). The Effect of rotational speed of homogenization on emulsion results obtained using soy lecithin emulsifier. Journal of Vocational Studies on Applied Research, 3(1), 14–17. https://doi.org/10.14710/jvsar.3.1.2021.14-17
10.14710/jvsar.v3i1.10916 Google Scholar
- Patiño-Rodríguez, O., Agama-Acevedo, E., Ramos-Lopez, G., & Bello-Pérez, L. A. (2020). Unripe mango kernel starch: Partial characterization. Food Hydrocolloids, 101, 105512. https://doi.org/10.1016/j.foodhyd.2019.105512
- Rattanathanalerk, M., Chiewchan, N., & Srichumpoung, W. (2005). Effect of thermal processing on the quality loss of pineapple juice. Journal of Food Engineering, 66(2), 259–265. https://doi.org/10.1016/j.jfoodeng.2004.03.016
- Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17, 512–531. https://doi.org/10.1111/1541-4337.12330
- Shabrina, Z. U., & Susanto, W. H. (2017). The effect of temperature and drying time with cabinet dryer method to the characteristics of dry processed product ‘Manisan’ from Anna Variety Apple (Malus domestica Borkh). Jurnal Pangan Dan Agroindustri, 5(3), 60–71.
- SPSS Inc. Released (2008). SPSS statistics for windows, version 17.0. SPSS Inc.
- Standard for Named Vegetable oils. (2021). CXS 210-1999. Codex Alimentarius International Food Standards, http://www.codexalimentarius.org
- Sucheta, G. R., Siddiqui, S., & Grewal, R. B. (2018). Development of mixed fruit toffee from guava and mango blends and its quality evaluation during storage. International Journal of Chemical Studies, 6(2), 1330–1332 https://www.chemijournal.com/archives/2018/vol6issue2/PartS/6-1-462-321.pdf
- Zhang, Y., Liao, J., & Qi, J. (2020). Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT, 128, 109397. https://doi.org/10.1016/j.lwt.2020.109397
- Zheng, J., Li, H., Wang, D., Li, R., Wang, S., & Ling, B. (2021). Radio frequency assisted extraction of pectin from apple pomace: Process optimization and comparison with microwave and conventional methods. Food Hydrocolloids, 121, 107031. https://doi.org/10.1016/j.foodhyd.2021.107031
- Zhu, D., Ji, B., Eum, H. L., & Zude, M. (2009). Evaluation of the non-enzymatic browning in thermally processed apple juice by front-face fluorescence spectroscopy. Food Chemistry, 113(1), 272–279. https://doi.org/10.1016/j.foodchem.2008.07.009