Impact of germination on the proximate composition, functional properties, and structural characteristics of black soybean (Glycine max L. Merr)
Swati Mitharwal
Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonipat, India
Search for more papers by this authorCorresponding Author
Komal Chauhan
Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonipat, India
Correspondence
Komal Chauhan, Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, Sonipat, India.
Email: [email protected]
Search for more papers by this authorSwati Mitharwal
Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonipat, India
Search for more papers by this authorCorresponding Author
Komal Chauhan
Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonipat, India
Correspondence
Komal Chauhan, Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, Sonipat, India.
Email: [email protected]
Search for more papers by this authorAbstract
This study aimed to investigate the impact of germination on the quality of black soybean flour (BSF). The black soybeans were germinated for different time period (24, 48, and 72 h), and the impact on proximate composition, functional, structural, and antioxidant properties of the obtained flour was evaluated. Germination process resulted in significant (p ≤ 0.05) increase in protein (39.46 ± 0.08–43.30 ± 0.05 g/100 g), crude fiber (7.55 ± 0.15–10.31 ± 0.16 g/100 g), and ash (5.95 ± 0.04–6.28 ± 0.01 g/100 g) content as compared with raw black soybean flour (RBSF). Further, significant variation in color attributes, functional properties, and pasting characteristics of raw and germinated black soybean flour (GBSF) was observed. Significant increase in total phenolic content (6.76 ± 0.05 to 9.30 ± 0.04 mg GAE/g), total flavonoid content (2.45 ± 0.04 to 4.32 ± 0.02 mg QE/g), and DPPH radical scavenging activity (41.31%–60.20%) was observed post germination (24–72 h). Scanning electron micrographs (SEMs) showed that germination resulted in microstructural changes in starch and protein matrix owing to activation of hydrolytic enzymes. Further, X-ray diffraction patterns elucidate significant reduction in crystallinity of GBSF (42.54%–44.48% for 24–72 h) in comparison to RBSF (45.75%).
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Adebiyi, J. A., Obadina, A. O., Mulaba-Bafubiandi, A. F., Adebo, O. A., & Kayitesi, E. (2016). Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet (Pennisetum glaucum) flour and biscuit. Journal of Cereal Science, 70, 132–139. https://doi.org/10.1016/j.jcs.2016.05.026
- Aguilera, Y., Díaz, M. F., Jiménez, T., Benítez, V., Herrera, T., Cuadrado, C., Martín-Pedrosa, M., & Martín-Cabrejas, M. A. (2013). Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. Journal of Agricultural and Food Chemistry, 61(34), 8120–8125. https://doi.org/10.1021/jf4022652
- Agume, A. S. N., Njintang, N. Y., & Mbofung, C. M. F. (2017). Effect of soaking and roasting on the physicochemical and pasting properties of soybean flour. Food, 6(2), 12. https://doi.org/10.3390/foods6020012
- Al-Ansi, W., Mahdi, A. A., Al-Maqtari, Q. A., Mushtaq, B. S., Ahmed, A., Karrar, E., Mohammed, J. K., Fan, M., Li, Y., Qian, H., & Wang, L. (2020). The potential improvements of naked barley pretreatments on GABA, β-glucan, and antioxidant properties. LWT-Food Science and Technology, 130, 109698. https://doi.org/10.1016/j.lwt.2020.109698
- Alu'datt, M. H., Gammoh, S., Rababah, T., Almomani, M., Alhamad, M. N., Ereifej, K., Almajwal, A., Tahat, A., Hussein, N. M., & Abou Nasser, S. (2018). Preparation, characterization, nanostructures and bio functional analysis of sonicated protein co-precipitates from brewers' spent grain and soybean flour. Food Chemistry, 240, 784–798. https://doi.org/10.1016/j.foodchem.2017.08.015
- AOAC. (2012). Official method of analysis ( 19th ed.). Association of Analytical Chemists.
- Aparicio-García, N., Martínez-Villaluenga, C., Frias, J., & Peñas, E. (2021). Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chemistry, 338, 127972. https://doi.org/10.1016/j.foodchem.2020.127972
- Atudorei, D., Stroe, S. G., & Codină, G. G. (2021). Impact of germination on the microstructural and physicochemical properties of different legume types. Plants, 10(3), 592. https://doi.org/10.3390/plants10030592
- Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9(4), 449–454. https://doi.org/10.1016/j.jtusci.2014.11.001
- Barak, S., Mudgil, D., & Khatkar, B. S. (2013). Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT-Food Science and Technology, 51(1), 211–217. https://doi.org/10.1016/j.lwt.2012.09.011
- Bashir, K., & Aggarwal, M. (2017). Physicochemical, thermal, and functional properties of gamma irradiated chickpea starch. International Journal of Biological Macromolecules, 97, 426–433. https://doi.org/10.1016/j.ijbiomac.2017.01.025
- Chauhan, A., Saxena, D. C., & Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT-Food Science and Technology, 63(2), 939–945. https://doi.org/10.1016/j.lwt.2015.03.115
- Chinma, C. E., Adedeji, O. E., Etim, I. I., Aniaka, G. I., Mathew, E. O., Ekeh, U. B., & Anumba, N. L. (2021). Physicochemical, nutritional, and sensory properties of chips produced from germinated African yam bean (Sphenostylis stenocarpa). LWT-Food Science and Technology, 136, 110330. https://doi.org/10.1016/j.lwt.2020.110330
- Cornejo, F., Novillo, G., Villacrés, E., & Rosell, C. M. (2019). Evaluation of the physicochemical and nutritional changes in two amaranth species (Amaranthus quitensis and Amaranthus caudatus) after germination. Food Research International, 121, 933–939. https://doi.org/10.1016/j.foodres.2019.01.022
- Ding, J. Z., Yang, T. W., Feng, H., Dong, M. Y., Slavin, M., Xiong, S., & Zhao, S. (2016). Enhancing contents of gamma-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxic and hypoxic conditions. Journal of Agricultural and Food Chemistry, 64, 1094–1102. https://doi.org/10.1021/acs.jafc.5b04859
- Domínguez-Arispuro, D. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., & Reyes-Moreno, C. (2018). Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. Journal of Food Science and Technology, 55(2), 638–647. https://doi.org/10.1007/s13197-017-2973-1
- Duta, D. E., & Culetu, A. (2015). Evaluation of rheological, physicochemical, thermal, mechanical and sensory properties of oat-based gluten free cookies. Journal of Food Engineering, 162, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.04.002
- El-Shimi, N. M., Luh, B. S., & Shehata, A. E. T. (1980). Changes in microstructure, starch granules and sugars of germinating broad beans. Journal of Food Science, 45(6), 1652–1657. https://doi.org/10.1111/j.1365-2621.1980.tb07583.x
- Ferreira, C. D., Bubolz, V. K., da Silva, J., Dittgen, C. L., Ziegler, V., de Oliveira Raphaelli, C., & de Oliveira, M. (2019). Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT-Food Science and Technology, 111, 363–369. https://doi.org/10.1016/j.lwt.2019.05.049
- Gan, R. Y., Wang, M. F., Lui, W. Y., Wu, K., & Corke, H. (2016). Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts. International Journal of Food Science & Technology, 51(9), 2090–2098. https://doi.org/10.1111/ijfs.13185
- Guajardo-Flores, D., Serna-Saldivar, S. O., & Gutierrez-Uribe, J. A. (2013). Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chemistry, 141, 1497–1503. https://doi.org/10.1016/j.foodchem.2013.04.010
- Guo, Y., Ma, M., Jiang, F., Jiang, W., Wang, H., & Du, S. K. (2019). Protein quality and antioxidant properties of soymilk derived from black soybean after in vitro simulated gastrointestinal digestion. International Journal of Food Science & Technology, 55, 720–728. https://doi.org/10.1111/ijfs.14335
- Han, C., Yin, X., He, D., & Yang, P. (2013). Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS One, 8(2), e56947. https://doi.org/10.1371/journal.pone.0056947
- Handa, V., Kumar, V., Panghal, A., Suri, S., & Kaur, J. (2017). Effect of soaking and germination on physicochemical and functional attributes of horsegram flour. Journal of Food Science and Technology, 54(13), 4229–4239. https://doi.org/10.1007/s13197-017-2892-1
- Hou, D., Duan, W., Xue, Y., Yousaf, L., Hu, J., & Shen, Q. (2020). Effects of superfine grinding and extrusion on dough mixing properties and noodle quality of black soybean flour. Journal of Food Measurement and Characterization, 14(1), 125–134. https://doi.org/10.1007/s11694-019-00274-6
- Jan, R., Saxena, D. C., & Singh, S. (2016). Physico-chemical, textural, sensory and antioxidant characteristics of gluten–free cookies made from raw and germinated Chenopodium (Chenopodium album) flour. LWT-Food Science and Technology, 71, 281–287. https://doi.org/10.1016/j.lwt.2016.04.001
- Jan, R., Saxena, D. C., & Singh, S. (2017). Effect of germination on nutritional, functional, pasting, and microstructural properties of chenopodium (Chenopodium album) flour. Journal of Food Processing and Preservation, 41(3), e12959. https://doi.org/10.1111/jfpp.12959
- Jimenez, M. D., Lobo, M., & Sammán, N. (2019). Influence of germination of quinoa (Chenopodium quinoa) and amaranth (Amaranthus) grains on nutritional and techno-functional properties of their flours. Journal of Food Composition and Analysis, 84, 103290. https://doi.org/10.1016/j.jfca.2019.103290
- Kanauchi, O., Mitsuyama, K., Andoh, A., & Iwanaga, T. (2008). Modulation of intestinal environment by prebiotic germinated barley foodstuff prevents chemo induced colonic carcinogenesis in rats. Oncology Reports, 20, 793–801. https://doi.org/10.3892/or_00000076
- Kaur, M., Sandhu, K. S., Arora, A., & Sharma, A. (2015). Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties. LWT-Food Science and Technology, 62(1), 628–632. https://doi.org/10.1016/j.lwt.2014.02.039
- Kim, D. K., Jeong, S. C., Gorinstein, S., & Chon, S. U. (2012). Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods for Human Nutrition, 67(1), 71–75. https://doi.org/10.1007/s11130-011-0273-x
- Kim, H. J., Han, J. A., Lim, S. T., & Cho, D. H. (2021). Effects of germination and roasting on physicochemical and sensory characteristics of brown rice for tea infusion. Food Chemistry, 350, 129240. https://doi.org/10.1016/j.foodchem.2021.129240
- Kim, J., Lee, H. I., Lim, Y. J., Park, Y. J., Kim, W., Kim, D. O., Kim, B. Y., Eom, S. H., & Baik, M. Y. (2020). Antioxidant and phytoestrogenic activities of puffed black soybeans (Glycine max). LWT-Food Science and Technology, 118, 108780. https://doi.org/10.1016/j.lwt.2019.108780
- Krishnan, V., Gothwal, S., Dahuja, A., Vinutha, T., Singh, B., Jolly, M., Praveen, S., & Sachdev, A. (2018). Enhanced nutraceutical potential of gamma irradiated black soybean extracts. Food Chemistry, 245, 246–253. https://doi.org/10.1016/j.foodchem.2017.10.099
- Kwon, S. H., Ahn, I. S., Kim, S. O., Kong, C. S., Chung, H. Y., Do, M. S., & Park, K. Y. (2007). Anti-obesity and hypolipidemic effects of black soybean anthocyanins. Journal of Medicinal Food, 10(3), 552–556. https://doi.org/10.1089/jmf.2006.147
- Lim, H. S., & Narsimhan, G. (2006). Pasting and rheological behavior of soy protein-based pudding. LWT-Food Science and Technology, 39(4), 344–350. https://doi.org/10.1016/j.lwt.2005.02.016
- Liu, C., Li, S., Tsao, R., Li, S., & Zhang, Y. (2017). Extraction and isolation of potential anti-stroke compounds from black soybean (Glycine max L. Merrill) guided by in vitro PC12 cell model. Journal of Functional Foods, 31, 295–303. https://doi.org/10.1016/j.jff.2017.02.011
- Liu, L., Yang, T., Yang, J., Zhou, Q., Wang, X., Cai, J., Huang, M., Dai, T., Cao, W., & Jiang, D. (2022). Relationship of starch pasting properties and dough rheology, and the role of starch in determining quality of short biscuit. Frontiers in Plant Science, 13, 829229. https://doi.org/10.3389/fpls.2022.829229
- Lopez, A., El-Naggar, T., Dueñas, M., Ortega, T., Estrella, I., Hernández, T., Gómez-Serranillos, M. P., Palomino, O. M., & Carretero, M. E. (2013). Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chemistry, 138, 547–555. https://doi.org/10.1016/j.foodchem.2012.10.107
- Mamilla, R. K., & Mishra, V. K. (2017). Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT-Food Science and Technology, 75, 51–58. https://doi.org/10.1016/j.lwt.2016.08.036
- Molinari, R., Costantini, L., Timperio, A. M., Lelli, V., Bonafaccia, F., Bonafaccia, G., & Merendino, N. (2018). Tartary buckwheat malt as ingredient of gluten-free cookies. Journal of Cereal Science, 80, 37–43. https://doi.org/10.1016/j.jcs.2017.11.011
- Pandey, S., Kumar, A., & Rao, P. S. (2021). Optimization, modeling, and characterization study for the physicochemical properties of raw banana and defatted soy composite extrudates. Food Chemistry, 339, 127865. https://doi.org/10.1016/j.foodchem.2020.127865
- Polat, H., Capar, T. D., Inanir, C., Ekici, L., & Yalcin, H. (2020). Formulation of functional crackers enriched with germinated lentil extract: A response surface methodology box-behnken design. LWT-Food Science and Technology, 123, 109065. https://doi.org/10.1016/j.lwt.2020.109065
- Rosa-Millán, J. D. L., Heredia-Olea, E., Perez-Carrillo, E., Guajardo-Flores, D., & Serna-Saldívar, S. R. O. (2019). Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L.). LWT-Food Science and Technology, 102, 330–337. https://doi.org/10.1016/j.lwt.2018.12.039
- Setia, R., Dai, Z., Nickerson, M. T., Sopiwnyk, E., Malcolmson, L., & Ai, Y. (2019). Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Research International, 122, 263–272. https://doi.org/10.1016/j.foodres.2019.04.021
- Sharanagat, V. S., Kumar, P., Patro, S., Ghule, P. D., Naryal, S., Meena, S., Singh, L., Kumar, Y., Gundev, P., Nagar, M., Bhadra, R., Mani, S., & Nema, P. K. (2019). Influence of germination on physicochemical, thermo-pasting, and antioxidant properties of moong grain (Vigna radiata). Journal of Food Processing and Preservation, 43(5), e13922. https://doi.org/10.1111/jfpp.13922
- Sharanagat, V. S., Suhag, R., Anand, P., Deswal, G., Kumar, R., Chaudhary, A., Singh, L., Kushwah, O. S., Mani, S., Kumar, Y., & Nema, P. K. (2019). Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. Journal of Cereal Science, 85, 111–119. https://doi.org/10.1016/j.jcs.2018.11.013
- Sharma, P., & Gujral, H. S. (2011). Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Research International, 44(1), 235–240. https://doi.org/10.1016/j.foodres.2010.10.030
- Sharma, S., Jan, R., Riar, C. S., & Bansal, V. (2021). Analyzing the effect of germination on the pasting, rheological, morphological and in-vitro antioxidant characteristics of kodo millet flour and extracts. Food Chemistry, 361, 130073. https://doi.org/10.1016/j.foodchem.2021.130073
- Shen, M., Wang, W., Ge, Y., Kang, Z., Wang, J., Quan, Z., Xiao, J., & Cao, L. (2019). Antidiabetic effects of soluble dietary fiber from steam explosion-modified black soybean hull in low-dose streptozotocin-induced type 2 diabetic mouses. Journal of Chemistry, 2019, 1–9. https://doi.org/10.1155/2019/6821438
- Singh, A., Sharma, S., & Singh, B. (2017). Effect of germination time and temperature on the functionality and protein solubility of sorghum flour. Journal of Cereal Science, 76, 131–139. https://doi.org/10.1016/j.jcs.2017.06.003
- Singh, A., Sharma, S., Singh, B., & Kaur, G. (2019). In vitro nutrient digestibility and antioxidative properties of flour prepared from sorghum germinated at different conditions. Journal of Food Science and Technology, 56(6), 3077–3089. https://doi.org/10.1007/s13197-019-03804-8
- Stevenson, D. G., Doorenbos, R. K., Jane, J. L., & Inglett, G. E. (2006). Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch-Stärke, 58(10), 509–519. https://doi.org/10.1002/star.200600534
- Suárez-Estrella, D., Borgonovo, G., Buratti, S., Ferranti, P., Accardo, F., Pagani, M. A., & Marti, A. (2021). Sprouting of quinoa (Chenopodium quinoa Willd.): Effect on saponin content and relation to the taste and astringency assessed by electronic tongue. LWT-Food Science and Technology, 144, 111234. https://doi.org/10.1016/j.lwt.2021.111234
- Świeca, M., Dziki, D., & Gawlik-Dziki, U. (2017). Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour. Food Chemistry, 228, 643–648. https://doi.org/10.1016/j.foodchem.2017.02.052
- Tang, Y., Xiao, L., Wu, X., Li, W., Wu, T., & Zhang, P. (2021). Impact of germination pretreatment on the polyphenol profile, antioxidant activities, and physicochemical properties of three color cultivars of highland barley. Journal of Cereal Science, 97, 103152. https://doi.org/10.1016/j.jcs.2020.103152
- Thi, D., Phuc, T., Tram, P., & Toan, H. (2016). Time and temperature dependence of antioxidant activity from soybean seeds (Glycine max L. Merr.) during germination. International Journal of Food Science and Nutrition, 5, 22–27.
- Torres, A., Frias, J., Granito, M., & Vidal-Valverde, C. (2007). Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological, and sensory evaluation. Food Chemistry, 101(1), 202–211. https://doi.org/10.1016/j.foodchem.2006.01.018
- Wang, N., Maximiuk, L., Fenn, D., Nickerson, M. T., & Hou, A. (2020). Development of a method for determining oil absorption capacity in pulse flours and protein materials. Cereal Chemistry, 97(6), 1111–1117. https://doi.org/10.1002/cche.10339
- Wani, I. A., Andrabi, S. N., Sogi, D. S., & Hassan, I. (2020). Comparative study of physicochemical and functional properties of flours from kidney bean (Phaseolus vulgaris L.) and green gram (Vigna radiata L.) cultivars grown in Indian temperate climate. Legume Science, 2(1), e11. https://doi.org/10.1002/leg3.11
- Wu, F., Chen, H., Yang, N., Wang, J., Duan, X., Jin, Z., & Xu, X. (2013). Effect of germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. Journal of Cereal Science, 58(2), 263–271. https://doi.org/10.1016/j.jcs.2013.06.008
- Xu, L., Chen, L., Ali, B., Yang, N. A., Chen, Y., Wu, F., Jin, Z., & Xu, X. (2017). Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.). Food Chemistry, 229, 312–318. https://doi.org/10.1016/j.foodchem.2017.02.096
- Xu, L., Yang, N., Wu, F., Jin, Z., & Xu, X. (2018). Effect of acid pretreatment on the physicochemical and antioxidant properties of germinated adlay (Coix lachryma-jobi L.). Journal of Food Processing and Preservation, 42(2), e13511. https://doi.org/10.1111/jfpp.13511
- Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., & Chen, B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry, 295, 579–587. https://doi.org/10.1016/j.foodchem.2019.05.167
- Yang, B., Yin, Y., Liu, C., Zhao, Z., & Guo, M. (2021). Effect of germination time on the compositional, functional and antioxidant properties of whole wheat malt and its end-use evaluation in cookie-making. Food Chemistry, 349, 129125. https://doi.org/10.1016/j.foodchem.2021.129125
- Yang, F., Basu, T. K., & Ooraikul, B. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Sciences and Nutrition, 52(4), 319–330. https://doi.org/10.1080/09637480120057567
- Yang, L., Wang, S., Zhang, W., Zhang, H., Guo, L., Zheng, S., & Du, C. (2022). Effect of black soybean flour particle size on the nutritional, texture and physicochemical characteristics of cookies. LWT-Food Science and Technology, 164, 113649. https://doi.org/10.1016/j.lwt.2022.113649
- Yang, Q., Luo, Y., Wang, H., Li, J., Gao, X., Gao, J., & Feng, B. (2021). Effects of germination on the physicochemical, nutritional and in vitro digestion characteristics of flours from waxy and nonwaxy proso millet, common buckwheat and pea. Innovative Food Science & Emerging Technologies, 67, 102586. https://doi.org/10.1016/j.ifset.2020.102586
- You, S. Y., Oh, S. G., Han, H. M., Jun, W., Hong, Y. S., & Chung, H. J. (2016). Impact of germination on the structures and in vitro digestibility of starch from waxy brown rice. International Journal of Biological Macromolecules, 82, 863–870. https://doi.org/10.1016/j.ijbiomac.2015.11.023
- Zhang, B. H., Fan, B., Li, M., Zhang, Y. H., & Gao, Z. H. (2018). Effects of thermal treatment on the properties of defatted soya bean flour and its adhesion to plywood. Royal Society Open Science, 5(5), 180015. https://doi.org/10.1098/rsos.180015