In vitro analysis of antioxidant peptides from an enzymatically hydrolysed Channa punctata protein isolate
Madhushrita Das
Department of Chemical Technology, University of Calcutta, Kolkata, India
Search for more papers by this authorCorresponding Author
Mahua Ghosh
Department of Chemical Technology, University of Calcutta, Kolkata, India
Correspondence
Mahua Ghosh, Department of Chemical Technology, University of Calcutta, 92, A. P. C Road, Kolkata-700009, West Bengal, India.
Email: [email protected]
Search for more papers by this authorMadhushrita Das
Department of Chemical Technology, University of Calcutta, Kolkata, India
Search for more papers by this authorCorresponding Author
Mahua Ghosh
Department of Chemical Technology, University of Calcutta, Kolkata, India
Correspondence
Mahua Ghosh, Department of Chemical Technology, University of Calcutta, 92, A. P. C Road, Kolkata-700009, West Bengal, India.
Email: [email protected]
Search for more papers by this authorAbstract
Channa punctata, a freshwater fish consists of a good amount of protein (64.42 ± 0.51%) with essential amino acids. The degree of hydrolysis was maximum at 240 min with 82.72 ± 0.89% and 21.37 ± 1.21% of hydrolysis in the case of Alcalase 2.4 L (AlcHyd240) and pepsin (PepHyd240). Low molecular weight bands (<10 kDa) were more prominent in AlcHyd240. Hydrolysate shows improved functional properties in comparison with isolate. <3 kDa ultrafiltrate shows enhanced antioxidative efficacy than the hydrolysate and isolate. The fractions were analysed by MALDI-TOF MS/MS and two peptides PLRVGN and PLPNSK with the highest score of 70.4 and 56.5, respectively and hydrophobicity of 50% were selected for in vitro study. Molecular docking studies revealed that peptides interacted with the radicals by H-bond. The presence of proline, leucine, valine, glycine, arginine, serine, and lysine induces antioxidant activity. Thus, this study suggested the peptides identified from Channa punctata can be used as a nutraceutical with potent antioxidant activity.
Novelty impact statement
- A potent antioxidant Channa punctata protein hydrolysates were generated by enzymatic hydrolysis and were purified by ultrafiltration.
- Amino acid sequences PLRVGN and PLPNSK were identified by using MALDI-TOF MS/MS. Docking study revealed H-bond interactions between the peptides and the free radical.
- According to the structure–activity relationship study, the presence of hydrophobic amino acid residues, glycine, and serine influences the antioxidant potential.
CONFLICTS OF INTEREST
There are no conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jfpp17176-sup-0001-Supplementary fig-1.tifimage/tif, 122.4 KB |
Supplementary Figure S1. |
jfpp17176-sup-0002-Supplementary fig-2.tifimage/tif, 94 KB |
Supplementary Figure S2. |
jfpp17176-sup-0003-Supplementary fig-3.tifimage/tif, 113.4 KB |
Supplementary Figure S3. |
jfpp17176-sup-0004-Supplementary fig-4.tifimage/tif, 92.9 KB |
Supplementary Figure S4. |
jfpp17176-sup-0005-Supplementary fig-5.tifimage/tif, 96.3 KB |
Supplementary Figure S5. |
jfpp17176-sup-0006-Supplementary fig-6.tifimage/tif, 93.1 KB |
Supplementary Figure S6. |
jfpp17176-sup-0007-Supplementary fig-7.tifimage/tif, 93.3 KB |
Supplementary Figure S7. |
jfpp17176-sup-0008-Supplementary fig-8.tifimage/tif, 73.9 KB |
Supplementary Figure S8. |
jfpp17176-sup-0009-Supplementary fig-9.tifimage/tif, 111.8 KB |
Supplementary Figure S9. |
jfpp17176-sup-0010-Supplementary fig-10.tifimage/tif, 104.3 KB |
Supplementary Figure S10. |
jfpp17176-sup-0011-Supplementary fig-11.tifimage/tif, 110 KB |
Supplementary Figure S11. |
jfpp17176-sup-0012-Supplementary fig-12.tifimage/tif, 93.9 KB |
Supplementary Figure S12. |
jfpp17176-sup-0013-Supplementary fig-13.tifimage/tif, 88.1 KB |
Supplementary Figure S13. |
jfpp17176-sup-0014-Supplementary Fig-14.tifimage/tif, 158.2 KB |
Supplementary Figure S14. |
jfpp17176-sup-0015-Supplementary File-1(PIR).pdfPDF document, 1.5 MB |
supporting S1. |
jfpp17176-sup-0016-Supplementary Tables.docxWord 2007 document , 14.9 KB |
Supplementary Table 1. |
jfpp17176-sup-0017-supplementary FIG-1(a) (1).tifimage/tif, 96.5 KB |
Supplementary Figure 1: |
jfpp17176-sup-0018-supplementary FIG-1(a) (2).tifimage/tif, 99.8 KB |
Supplementary Figure 2: |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Agarwal, H., Joshi, R., & Gupta, M. (2016). Isolation, purification, and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chemistry, 204, 365–372. https://doi.org/10.1016/j.foodchem.2016.02.127
- Alahmad, K., Xia, W., Jiang, Q., & Xu, Y. (2022). Effect of the degree of hydrolysis on nutritional, functional, and morphological characteristics of protein hydrolysate produced from Bighead Carp (Hypophthalmichthys nobilis) using ficin enzyme. Food, 11(9), 1320. https://doi.org/10.3390/foods11091320
- Alsmeyer, R. H., Cunningham, A. E., & Happich, M. (1974). Equations predicting PER from amino acid analysis. Food Technology, 28(7), 34–40. https://doi.org/10.12691/ajfst-2-2-4
- Association of Official Analytical Chemists (AOAC). (1990). Official methods of analysis (Vol. I, 15th ed., p. 1298). AOAC.
- Bamdad, F., Wu, J., & Chen, L. (2011). Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science, 54, 20–28. https://doi.org/10.1016/j.jcs.2011.01.006
- Bao, Z. J., Zhao, Y., Wang, X. Y., & Chi, Y. J. (2017). Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. Journal of Food Science and Technology, 54(3), 669–678. https://doi.org/10.1007/s13197-017-2504-0
- Benzie, I. F., & Szeto, Y. T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 47(2), 633–636. https://doi.org/10.1021/jf9807768
- Bernadi, D. L. S., Polisof, A. M. R., & Bartholomai, G. B. (1991). Enzymatic modification of soy protein concentrates by fungal and bacterial proteases. Journal of the American Oil Chemists Society, 68, 102–105. https://doi.org/10.1007/BF02662327
- Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/y59-099
- Chatterjee, R., Dey, T. K., Ghosh, M., & Dhar, P. (2015). Enzymatic modification of sesame seed protein, sourced from waste resource for nutraceutical applications. Food and Bioproducts Processing, 94, 70–81. https://doi.org/10.1016/j.fbp.2015.01.007
- Chatterjee, R., Dey, T. K., Roy Chowdhury, A., Paul, D., & Dhar, P. (2020). Enzymatically excised oligopeptides from Bellamya bengalensis shows potent antioxidative and antihypertensive activity. Journal of Food Science and Technology, 57, 2586–2601. https://doi.org/10.1007/s13197-020-04295-8
- Chen, C., Li, Z., Huang, H., Suzek, B. E., Wu, C. H., & Consortium, U. (2013). A fast peptide match service for uniport knowledge base. Bioinformatics, 29(1), 2808–2809. https://doi.org/10.1093/bioinformatics/btt484
- Chritiansen, K. F., Vegarud, G., Langsrud, T., Ellekiaer, M. R., & Egelandsdal, B. (2004). Hydrolysed whey proteins as emulsifiers and stabilisers in high pressure processed dressings. Food Hydrocolloids, 18(5), 757–767. https://doi.org/10.1016/j.foodhyd.2003.12.002
- Daud, N. A., Babji, A. S., & Yosup, S. M. (2015). Effects of enzymatic hydrolysis on the antioxidative and antihypertensive activities from red tilapia fish protein. Nutrition and Food Sciences, 5(4), 1–5. https://doi.org/10.4172/2155-9600.1000387
10.4172/2155?9600.1000387 Google Scholar
- Diniz, F. M., & Martin, A. M. (1997). Effects of the extent of enzymatic hydrolysis on the functional properties of shark protein hydrolysate. LWT-Food Science and Technology, 30, 266–272. https://doi.org/10.1006/fstl.1996.0184
- Doucet, D., Don, E. O., Gauthier, S. F., & Foegeding, E. A. (2003). Enzyme-induced gelation of extensively hydrolysed whey proteins by Alcalase: Peptide identification and determination of enzyme specificity. Journal of Agricultural and Food Chemistry, 51, 6300–6308. https://doi.org/10.1021/jf026242v
- FAO/WHO. (1973). Energy and protein requirements: Report of a joint FAO/WHO ad hoc expert committee. FAO Nutrition Meetings Report Series No. 52, WHO Technical Report Series No. 522.
- Foh, M. B. K., Amadou, I., Foh, B. M., Kamara, M. T., & Xia, W. (2010). Functionality and antioxidative properties of Tilapia (Orechromis niloticus) as influenced by the degree of hydrolysis. International Journal of Molecular Sciences, 11(4), 1851–1869. https://doi.org/10.3390/ijms11041851
- Friedman, M. (1996). Nutritional value of proteins from different food sources. A review. Journal of Agricultural and Food Chemistry, 44(1), 6–29.
- Ghassem, M., Arihara, K., Babji, A. S., Said, M., & Ibrahim, S. (2011). Purification and identification of ACE inhibitory peptides from haruan (Channa striatus) myofibrillar protein hydrolysates using HPLC-ESI-TOF MS/MS. Food Chemistry, 129(4), 1770–1777. https://doi.org/10.1016/j.foodchem.2011.06.051
- Halder, A., Das, M., Chatterjee, R., Dey, T. K., Dhar, P., & Chakrabarti, J. (2018). Functional properties of protein hydrolysates from fresh water mussel Lamellidens marginalis (Lam). Indian Journal of Biochemistry and Biophysics, 55, 105–113.
- Halder, A., Das, M., Dey, T. K., Dhar, P., & Chakrabarti, J. (2022). Isolation of an antihypertensive bioactive peptide from the fresh water mussel Lamellidens marginalis. International Journal of Food and Nutritional Sciences, 11(1), 1–8. https://doi.org/10.54876/ijfans_01-08
10.54876/ijfans_01-08 Google Scholar
- Hamuro, Y., Coales, S. J., Maolnar, K. S., Tuske, S. J., & Morrow, J. A. (2008). Specificity of immobilised porcine pepsin in H/D exchange compatible conditions. Rapid Communications in Mass Spectrometry, 22, 1041–1046. https://doi.org/10.1002/rcm.3467
- Haniffa, M. A. K., Sheela, P. A. J., Kavitha, K., & Jais, A. M. M. (2014). Salutary value of Haruan, the striped snakehead Channa striatus—Review. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S8–S15. https://doi.org/10.12980/APJTB.4.2014C1015
- Harnedy, P. A., & FitzGerald, R. J. (2012). Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods, 4(1), 6–24. https://doi.org/10.1016/j.jff.2011.09.001
- Helrich, K. (1990). Method 988.05. Official methods of analysis ( 15th ed.). The Association of Official Analytical Chemists Inc.
- Islam, M. S., Hongxin, W., Admassu, H., Noman, A., Ma, C., & We, F. A. (2021). Degree of hydrolysis, functional and antioxidant properties of protein hydrolysate from Grass Turtle (Chinemys reevesii) as influenced by enzymatic hydrolysis conditions. Food Science & Nutrition, 9, 4031–4047. https://doi.org/10.1002/fsn3.1903
- Kim, S. Y., Park, P. S., & Rhee, K. C. (1990). Functional properties of proteolytic enzyme modified soy protein isolate. Journal of Agricultural and Food Chemistry, 38, 651–656. https://doi.org/10.1021/jf00093a014
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680a0
- Liceaga-Gesualdo, A. M., & Li-Chan, E. C. Y. (1999). Functional properties of fish protein hydrolysate from Herring (Clupea harengus). Food Chemistry and Toxicology, 64(6), 1000–1004. https://doi.org/10.1111/j.1365-2621.1999.tb12268.x
- Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants, and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118–126. https://doi.org/10.4103/0973-7847.70902
- Lourenço, S. C., Martins, M. M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry application. Molecules, 24(4132), 1–25. https://doi.org/10.3390/molecules24224132
- Lowry, O. H., Rosenberg, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.
- Maralani, M. N., Movahedian, A., & Javanmard, S. H. (2012). Antioxidant and cytoprotective effects of L-Serine on human endothelial cells. Research in Pharmaceutical Sciences, 7(4), 209–215.
- Mirzaei, M., Mirdamadi, S., Ehsani, M. R., & Aminlari, M. (2018). Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Journal of Food and Drug Analysis, 26(2), 696–705. https://doi.org/10.1016/j.jfda.2017.07.008
- Mohanty, B. P., Ganguly, S., Mahanty, A., Mitra, T., Patra, S., Karunakaran, D., Mathew, S., Chakraborty, K., Paul, B. N., Sarma, D., Dayal, J. S., Singh, S., & Ayyappan, S. (2019). Fish in human health and nutrition. Advances in Fish Research, 7, 189–218.
- Mohanty, B. P., Pati, M. K., Bhattacharjee, S., Hajra, A., & Sharma, A. P. (2013). Small indigenous fishes and their importance in human health. Advances in Fish Research, 5, 257–278.
- Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238–242. https://doi.org/10.1016/j.foodchem.2008.12.013
- Pandey, S., Parvez, S., Ansari, R. A., Ali, M., Kaur, M., Hayat, F., & Raisuddin, S. (2008). Effects of exposure to multiple trace metals on biochemical, histological and ultra-structural features of gills of a freshwater fish, Channa punctata Bloch. Chemico-Biological Interactions, 174, 183–192. https://doi.org/10.1016/j.cbi.2008.05.014
- Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26, 716–723.
- Penaflorida, V. D. (1989). An evaluation of indigenous protein sources as potential component in the diet formulation for tiger prawn, Penaeus monodon, using essential amino acid index (EAAI). Aquaculture, 83, 319–330. https://doi.org/10.1016/0044-8486(89)90043-4
- Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets and their implications in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0
- Rajurkar, N. S., & Hande, S. M. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146–151. https://doi.org/10.4103/0250-474x.91574
- Ritchie, D. W., & Venkatraman, V. (2010). Ultra-fast FTT protein docking on graphics processors. Bioinformatics, 26(19), 2398–2405. https://doi.org/10.1093/bioinformatics/btq444
- Rocha, M. D., Aleman, A., Baccan, G. C., Caballero, M. E. L., Gullien, C. G., Montero, P., & Prentice, C. (2018). Anti-inflammatory, antioxidant, and antimicrobial effects of underutilised fish protein hydrolysate. Journal of Aquatic Food Products Technology, 27(5), 592–608. https://doi.org/10.1080/10498850.2018.1461160
- Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956. https://doi.org/10.1016/j.peptides.2010.06
- Sbroggio, M. F., Montilha, M. S., Figueiredo, V. R. G. D., Georgetti, S. R., & Kurozawa, L. E. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysate. Journal of Food Science and Technology, 36(2), 375–281. https://doi.org/10.1590/1678-457X.000216
10.1590/1678-457X.000216 Google Scholar
- Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40, 945–948. https://doi.org/10.1021/jf00018a005
- Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. Journal of Functional Foods, 21, 10–26. https://doi.org/10.1016/j.jff.2015.11.007
- Singh, R. P., Murthy, K. N., & Jayaprakash, G. K. (2001). Studies on antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81–86. https://doi.org/10.1021/jf010865b
- Van der Plancken, I., Van Remoortere, M., Indrawati, I., Van Loey, A., & Hendrickx, M. E. (2003). Heat-induced changes in the susceptibility of egg white proteins to enzymatic hydrolysis: A kinetic study. Journal of Agricultural and Food Chemistry, 51(13), 3819–3823.
- van der Van, C., Gruppen, H., de Bont, D. B. A., & Voragen, A. G. J. (2001). Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. Journal of Agricultural & Food Chemistry, 49(10), 5005–5012. https://doi.org/10.1021/jf010144c
- Zayas, J. F. (1997). Water holding capacity of proteins. In J. F. Zayas (Ed.), Functionality of proteins in food. GmbH Springerr-Verlag.
10.1007/978-3-642-59116-7_3 Google Scholar