Recovery of phenolic compounds from purple onion peel using bio-based solvents: Thermal degradation kinetics and color stability of anthocyanins
Corresponding Author
Luan Gustavo Santos
Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
Correspondence
Vilásia Guimarães Martins and Luan Gustavo Santos, Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande – RS, 96203-900, Brazil.
Emails: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Vilásia Guimarães Martins
Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
Correspondence
Vilásia Guimarães Martins and Luan Gustavo Santos, Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande – RS, 96203-900, Brazil.
Emails: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Luan Gustavo Santos
Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
Correspondence
Vilásia Guimarães Martins and Luan Gustavo Santos, Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande – RS, 96203-900, Brazil.
Emails: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Vilásia Guimarães Martins
Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
Correspondence
Vilásia Guimarães Martins and Luan Gustavo Santos, Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande – RS, 96203-900, Brazil.
Emails: [email protected]; [email protected]
Search for more papers by this authorAbstract
The aim of this study was to evaluate the influence of bio-based solvent (ethanol, water, and acetic acid) on the extraction of phenolic (TPC), anthocyanins (TAC), and flavonoids (TFC) from purple onion peel and also analyze the effects of storage temperature on the kinetics of anthocyanin degradation and color stability of the phenolic-rich extract obtained. The purple onion extract obtained with 60% ethanol (E60E) showed, respectively, TPC, TAC, and TFC about 3.4, 2.5, and 4.45 times higher than the other solvents used. E60E showed higher antioxidant and antibacterial potential compared to other solvents. E60E was stored at 4, 25, and 38°C, a half-life of 285, 48.81, and 21.80 days was obtained, respectively. The degradation of anthocyanins in E60E occurred by an endothermic and non-spontaneous reaction with activation energy of 54.65 kJ mol−1, being strongly related to the thermal sensitivity of the phenolic compound.
Novelty impact statement
Purple onion peel is a food waste rich in bioactive compounds, being a low-cost alternative for obtaining extracts with coloring and functional potential. The results of this study indicate that the purple onion peel is an excellent source for obtaining a phenolic-rich extract with high antioxidant and antimicrobial activity. The anthocyanin, color, and stability index indicates that the extract can applied in several biosectors (e.g., pharmaceutical, cosmetic, and food industries).
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Agcam, E. (2022). Degradation kinetics of pomegranate juice phenolics under cold and warm sonication process. Innovative Food Science & Emerging Technologies, 80, 103080. https://doi.org/10.1016/j.ifset.2022.103080
- Ali, O.-H., Al-sayed, H., Yasin, N., & Afifi, E. (2016). Effect of different extraction methods on stablity of anthocyanins extracted from red onion peels (Allium cepa) and its uses as food colorants. Bulletin of the National Nutrition Institute, 47(2), 1–24. https://doi.org/10.21608/bnni.2016.4218
10.21608/bnni.2016.4218 Google Scholar
- Araújo, F. F., Farias, D. P., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry, 338(July 2020), 127535. https://doi.org/10.1016/j.foodchem.2020.127535
- Bi, Y., Chi, X., Zhang, R., Lu, Y., Wang, Z., Dong, Q., Ding, C., Yang, R., & Jiang, L. (2020). Highly efficient extraction of mulberry anthocyanins in deep eutectic solvents: Insights of degradation kinetics and stability evaluation. Innovative Food Science and Emerging Technologies, 66(August), 102512. https://doi.org/10.1016/j.ifset.2020.102512
- Bordin Viera, V., Piovesan, N., Mello, R. D. O., Barin, J. S., Fogaça, A. D. O., Bizzi, C. A., De Moraes Flores, É. M., Dos Santos Costa, A. C., Pereira, D. E., Soares, J. K. B., & Hashime Kubota, E. (2021). Ultrasonic _assisted extraction of phenolic compounds with evaluation of red onion skin (Allium cepa L.) antioxidant capacity. Journal of Culinary Science & Technology, 19, 1–17. https://doi.org/10.1080/15428052.2021.1910095
- Chemat, F., Abert Vian, M., Ravi, H. K., Khadhraoui, B., Hilali, S., Perino, S., & Fabiano Tixier, A. S. (2019). Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules, 24(16), 3007. https://doi.org/10.3390/molecules24163007
- Chen, C.-C., Lin, C., Chen, M.-H., & Chiang, P.-Y. (2019). Stability and quality of anthocyanin in purple sweet potato extracts. Foods, 8(9), 393. https://doi.org/10.3390/foods8090393
- Costa, H. C. B., Silva, D. O., & Vieira, L. G. M. (2018). Physical properties of açai-berry pulp and kinetics study of its anthocyanin thermal degradation. Journal of Food Engineering, 239(May), 104–113. https://doi.org/10.1016/j.jfoodeng.2018.07.007
- Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313
- Dairi, S., Dahmoune, F., Belbahi, A., Remini, H., Kadri, N., Aoun, O., Bouaoudia, N., & Madani, K. (2021). Optimization of microwave extraction method of phenolic compounds from red onion using response surface methodology and inhibition of lipoprotein low-density oxidation. Journal of Applied Research on Medicinal and Aromatic Plants, 22(April 2020), 100301. https://doi.org/10.1016/j.jarmap.2021.100301
- Deng, L., Mujumdar, A. S., Yang, W., Zhang, Q., Zheng, Z., Wu, M., & Xiao, H. (2020). Hot air impingement drying kinetics and quality attributes of orange peel. Journal of Food Processing and Preservation, 44(1), 1–11. https://doi.org/10.1111/jfpp.14294
- Drăghici, O., Păcală, M. L., & Oancea, S. (2018). Kinetic studies on the oxidative stabilization effect of red onion skins anthocyanins extract on parsley (Petroselinum crispum) seed oil. Food Chemistry, 265(February), 337–343. https://doi.org/10.1016/j.foodchem.2018.05.075
- Etxabide, A., Kilmartin, P. A., & Maté, J. I. (2021). Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control, 121(September 2020), 107645. https://doi.org/10.1016/j.foodcont.2020.107645
- Faria, G. Y. Y., Souza, M. M., Oliveira, J. R. M., Costa, C. S. B., Collares, M. P., & Prentice, C. (2020). Effect of ultrasound-assisted cold plasma pretreatment to obtain sea asparagus extract and its application in Italian salami. Food Research International, 137, 109435. https://doi.org/10.1016/j.foodres.2020.109435
- Freitas, T. S. M., Rodrigues, G. M., Fakhouri, F. M., Silva, C., Andrea Lima Cardoso, C., Ignacio Velasco, J., Tostes Filgueiras, C., & Augusto dos Santos Garcia, V. (2021). Application of the Box–Behnken experimental design for the extraction of phenolic compounds from araçá-roxo (Psidium myrtoides). Journal of Food Processing and Preservation, 45(3), 1–14. https://doi.org/10.1111/jfpp.15260
- Kara, Ş., & Ercȩlebi, E. A. (2013). Thermal degradation kinetics of anthocyanins and visual colour of Urmu mulberry (Morus nigra L.). Journal of Food Engineering, 116(2), 541–547. https://doi.org/10.1016/j.jfoodeng.2012.12.030
- Lee, J., Durst, R., & Wrolstad, R. (2005). Method description pH 1.0 buffer (potassium chloride, 0.025M). Official Methods of Analysis of AOAC International, 2, 2005–2006.
- Liao, J., Peng, B., Chu, X., & Yu, G. (2022). Effects of process parameters on the extraction of total anthocyanins from purple sweet potatoes by ultrasound with wide frequency and its kinetics study. Journal of Food Processing and Preservation, 46(7), 1–14. https://doi.org/10.1111/jfpp.16732
- Liao, J., Xue, H., Li, J., & Peng, L. (2022). Effects of ultrasound frequency and process variables of modified ultrasound-assisted extraction on the extraction of anthocyanin from strawberry fruit. Food Science and Technology, 42, 1–8. https://doi.org/10.1590/fst.20922
- Ling, J. K. U., Chan, Y. S., & Nandong, J. (2021). Degradation kinetics modeling of antioxidant compounds from the wastes of Mangifera pajang fruit in aqueous and choline chloride/ascorbic acid natural deep eutectic solvent. Journal of Food Engineering, 294(November 2020), 110401. https://doi.org/10.1016/j.jfoodeng.2020.110401
- Liu, J., Wang, H., Guo, M., Li, L., Chen, M., Jiang, S., Li, X., & Jiang, S. (2019). Extract from Lycium ruthenicum Murr. Incorporating κ-carrageenan colorimetric film with a wide pH–sensing range for food freshness monitoring. Food Hydrocolloids, 94(December 2018), 1–10. https://doi.org/10.1016/j.foodhyd.2019.03.008
- Luna-Vital, D., Li, Q., West, L., West, M., & Gonzalez de Mejia, E. (2017). Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs. Food Chemistry, 232, 639–647. https://doi.org/10.1016/j.foodchem.2017.03.169
- Marangoni Júnior, L., De Bastiani, G., Vieira, R. P., & Anjos, C. A. R. (2020). Thermal degradation kinetics of total anthocyanins in açaí pulp and transient processing simulations. SN Applied Sciences, 2(4), 1–8. https://doi.org/10.1007/s42452-020-2340-0
- Martínez-Ramos, T., Benedito-Fort, J., Watson, N. J., Ruiz-López, I. I., Che-Galicia, G., & Corona-Jiménez, E. (2020). Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food and Bioproducts Processing, 122, 41–54. https://doi.org/10.1016/j.fbp.2020.03.011
- Martinsen, B. K., Aaby, K., & Skrede, G. (2020). Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry, 316(December 2019), 126297. https://doi.org/10.1016/j.foodchem.2020.126297
- Mazhitova, A. T., Kasymakunova, A. M., & Turker, N. (2022). Thermal stability enhancement of berry anthocyanins by co-pigmentation with extracts from natural sources. International Journal of Food Engineering, 18(7), 537–545. https://doi.org/10.1515/ijfe-2021-0260
- Moldovan, B., Ardelean, A., & David, L. (2019). Degradation kinetics of anthocyanins during heat treatment of wild blackthorn (Prunus spinosa L.) fruits extract. Studia Universitatis Babes-Bolyai Chemia, 64(2Tom2), 401–410. https://doi.org/10.24193/subbchem.2019.2.34
- Oliveira, L. M., & Antelo, F. (2020). Thermostability of the visual color and anthocyanins from Rio-Grande-Cherry (Eugenia involucrata DC). Brazilian Journal of Food Technology, 23, 1–12. https://doi.org/10.1590/1981-6723.14019
10.1590/1981-6723.14019 Google Scholar
- Pagano, C., Marinozzi, M., Baiocchi, C., Beccari, T., Calarco, P., Ceccarini, M. R., Chielli, M., Orabona, C., Orecchini, E., Ortenzi, R., Ricci, M., Scuota, S., Tiralti, M. C., & Perioli, L. (2020). Bioadhesive polymeric films based on red onion skins extract for wound treatment: An innovative and eco-friendly formulation. Molecules, 25(2), 1–18. https://doi.org/10.3390/molecules25020318
- Peron, D. V., Fraga, S., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity. Food Chemistry, 232, 836–840. https://doi.org/10.1016/j.foodchem.2017.04.088
- Qiu, G., Wang, D., Song, X., Deng, Y., & Zhao, Y. (2018). Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices. Food Research International, 105(June 2017), 121–128. https://doi.org/10.1016/j.foodres.2017.10.050
- Ren, F., Nian, Y., & Perussello, C. A. (2020). Effect of storage, food processing and novel extraction technologies on onions flavonoid content: A review. Food Research International, 132(December 2019), 108953. https://doi.org/10.1016/j.foodres.2019.108953
- Rodriguez-Amaya, D. B. (2019). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124(March 2018), 200–205. https://doi.org/10.1016/j.foodres.2018.05.028
- Sagar, N. A., Pareek, S., & Gonzalez-Aguilar, G. A. (2020). Quantification of flavonoids, total phenols and antioxidant properties of onion skin: a comparative study of fifteen Indian cultivars. Journal of Food Science and Technology, 57(7), 2423–2432. https://doi.org/10.1007/s13197-020-04277-w
- Santos, L. G., Silva, G. F. A., Gomes, B. M., & Martins, V. G. (2021). A novel sodium alginate active films functionalized with purple onion peel extract (Allium cepa). Biocatalysis and Agricultural Biotechnology, 35(July), 102096. https://doi.org/10.1016/j.bcab.2021.102096
- Saptarini, N. M., & Herawati, I. E. (2018). Extraction methods and varieties affect total anthocyanins content in acidified extract of papery skin of onion (Allium cepa L.). Drug Invention Today, 10(4), 471–474.
- Singh, J. P., Kaur, A., Singh, N., Nim, L., Shevkani, K., Kaur, H., & Arora, D. S. (2016). In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT, 65, 1025–1030. https://doi.org/10.1016/j.lwt.2015.09.038
- Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Karimi, G., Nemati, S. H., & Asili, J. (2018). Phenolic profile and antioxidant activity of Pistacia vera var. Sarakhs hull and kernel extracts: the influence of different solvents. Journal of Food Measurement and Characterization, 12(3), 2138–2144. https://doi.org/10.1007/s11694-018-9829-x
- Tan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., & Xue, H. (2022). Extraction and purification of anthocyanins: A review. Journal of Agriculture and Food Research, 8, 100306. https://doi.org/10.1016/j.jafr.2022.100306
- Viera, V. B., Piovesan, N., Rodrigues, J. B., de O Mello, R., Prestes, R. C., Dos Santos, R. C. V., de A Vaucher, R., Hautrive, T. P., & Kubota, E. H. (2017). Extraction of phenolic compounds and evaluation of the antioxidant and antimicrobial capacity of red onion skin (Allium cepa L.). International Food Research Journal, 24(3), 990–999.
- Yang, W., Kaimainen, M., Järvenpää, E., Sandell, M., Huopalahti, R., Yang, B., & Laaksonen, O. (2021). Red beet (Beta vulgaris) betalains and grape (Vitis vinifera) anthocyanins as colorants in white currant juice – Effect of storage on degradation kinetics, color stability and sensory properties. Food Chemistry, 348(September 2020), 128995. https://doi.org/10.1016/j.foodchem.2020.128995
- Zhang, Y., Sun, Y., Zhang, H., Mai, Q., Zhang, B., Li, H., & Deng, Z. (2020). Food Bioscience The degradation rules of anthocyanins from eggplant peel and antioxidant capacity in fortified model food system during the thermal treatments. Food Bioscience, 38(March), 100701. https://doi.org/10.1016/j.fbio.2020.100701