Biosorption of phenolic compounds from Plinia cauliflora seeds in residual yeast: Kinetic, equilibrium, and bioaccessibility studies
Wédisley Volpato Maroldi
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorGiselle Maria Maciel
Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Brazil
Search for more papers by this authorRaquel Rossetto
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorDébora Gonçalves Bortolini
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorIsabela de Andrade Arruda Fernandes
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorCorresponding Author
Charles Windson Isidoro Haminiuk
Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Brazil
Correspondence
Charles Windson Isidoro Haminiuk, Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, CEP 81280-340, PR, Brazil.
Email: [email protected]
Search for more papers by this authorWédisley Volpato Maroldi
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorGiselle Maria Maciel
Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Brazil
Search for more papers by this authorRaquel Rossetto
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorDébora Gonçalves Bortolini
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorIsabela de Andrade Arruda Fernandes
Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Search for more papers by this authorCorresponding Author
Charles Windson Isidoro Haminiuk
Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Brazil
Correspondence
Charles Windson Isidoro Haminiuk, Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, CEP 81280-340, PR, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
This study aimed to evaluate the biosorption mechanisms of bioactive compounds from jaboticaba (Plinia cauliflora) seeds adsorbed on residual Saccharomyces cerevisiae. The bioaccessibility of bioactive compounds before and after the biosorption process was tested using the simulated gastrointestinal digestion technique. The biosorption process was evaluated at different solution pH values (2, 4, 6, and 8). In the present study, the biosorption occurred more favorably in an acid solution medium, and the highest adsorption capacity was found at pH 2 (qe = 49 mg g−1). In alkaline conditions (pH > 7), the biosorption was disfavored. The biosorption kinetics of phenolic compounds from jaboticaba seed extract in yeasts showed a fast equilibrium time (45 min). In addition, 80% of biosorption occurred within the first 15 min. Regarding the isotherm studies, the increased adsorption capacity observed was directly proportional to the increase in the concentration of the initial solution, presenting an L-type curve characteristic of monolayer adsorption. The Sips and Jovanovic monolayer models suggest that the maximum adsorption capacity (q) was 75 mg g−1. According to the separation factor (RL) of the Langmuir model, the adsorption of the phenolic compounds extracted from the jaboticaba seeds occurred favorably (RL = 0.509). In addition, the concentration of total phenolic compounds after simulated gastrointestinal digestion was reduced in crude and biosorbed extracts, with bioaccessibility values of 5.37 and 2.64, respectively. However, the concentration of these total compounds increased after intestinal digestion of the biosorbed yeast. The biosorption equilibrium time was reached at 45 min, and the maximum adsorption capacity for the concentrations studied was 50 mg g−1 at pH 2. These results show that S. cerevisiae is a biosorbent capable of protecting and releasing compounds during gastrointestinal digestion and acts as a polyphenol delivery system.
Novelty impact statement
Yeasts biosorbed with bioactive compounds of plants can be used as a delivery system of secondary metabolites where the enriched biomass act in preserving the antioxidant and bioaccessibility of the molecules.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 1–11. https://doi.org/10.1155/2017/3039817
- Barba, F. J., Zhu, Z., Koubaa, M., Sant'Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science and Technology, 49, 96–109. https://doi.org/10.1016/j.tifs.2016.01.006
- Bortolini, D. G., Barros, L., Maciel, G. M., Brugnari, T., Modkovski, T. A., Fachi, M. M., Pontarolo, R., Pinela, J., Ferreira, I. C. F. R., & Haminiuk, C. W. I. (2022). Bioactive profile of edible nasturtium and rose flowers during simulated gastrointestinal digestion. Food Chemistry, 381, 132267. https://doi.org/10.1016/j.foodchem.2022.132267
- Bortolini, D. G., Maciel, G. M., de Fernandes, I. A. A., Rossetto, R., Brugnari, T., Ribeiro, V. R., & Haminiuk, I. C. W. (2022). Biological potential and technological applications of red fruits: An overview. Food Chemistry Advances, 1, 100014. https://doi.org/10.1016/j.focha.2022.100014
10.1016/j.focha.2022.100014 Google Scholar
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
- Chen, G. L., Chen, S. G., Zhao, Y. Y., Luo, C. X., Li, J., & Gao, Y. Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150–157. https://doi.org/10.1016/j.indcrop.2014.03.018
- da Silva Brito, T. G., da Silva, A. P., da Cunha, R. X., da Fonseca, C. S., da Silva Araujo, T. F., de Lima Campos, J. K., Nascimento, W. M., de Araújo, H. D., e Silva, J. P., Tavares, J. F., & Dos Santos, B. S. (2021). Anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic activities of Plinia cauliflora (Mart.) Kausel (Brazilian grape) epicarp. Journal of Ethnopharmacology, 268, 113611. https://doi.org/10.1016/j.jep.2020.113611
- de Oliveira, A. L. M. S., Maciel, G. M., Rossetto, R., de Liz, M. V., Rampazzo Ribeiro, V., & Haminiuk, C. W. I. (2019). Saccharomyces cerevisiae biosorbed with grape pomace flavonoids: Adsorption studies and in vitro simulated gastrointestinal digestion. International Journal of Food Science and Technology, 54, 1413–1422. https://doi.org/10.1111/ijfs.14110
- Fidelis, M., Santos, J. S., Escher, G. B., Rocha, R. S., Cruz, A. G., Cruz, T. M., Marques, M. B., Nunes, J. B., do Carmo, M. A. V., de Almeida, L. A., Kaneshima, T., Azevedo, L., & Granato, D. (2021). Polyphenols of jabuticaba [Myrciaria Jaboticaba (Vell.) O.Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats. Food Chemistry, 334, 127565. https://doi.org/10.1016/j.foodchem.2020.127565
- Gawlik-Dziki, U., Dziki, D., Baraniak, B., & Lin, R. (2009). The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT - Food Science and Technology, 42(1), 137–143. https://doi.org/10.1016/J.LWT.2008.06.009
- Holkem, A. T., Robichaud, V., Favaro-Trindade, C. S., & Lacroix, M. (2020). Chemopreventive properties of extracts obtained from blueberry (Vaccinium myrtillus L.) and Jabuticaba (Myrciaria cauliflora berg.) in combination with probiotics. Nutrition and Cancer, 73(4), 671–685. https://doi.org/10.1080/01635581.2020.1761986
- Huang, D., Boxin, O. U., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c
- Inada, K. O. P., Silva, T. B. R., Lobo, L. A., Domingues, R. M. C. P., Perrone, D., & Monteiro, M. (2020). Bioaccessibility of phenolic compounds of Jaboticaba (Plinia Jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. Journal of Functional Foods, 67, 103851. https://doi.org/10.1016/j.jff.2020.103851
- Jilani, H., Cilla, A., Barberá, R., & Hamdi, M. (2015). Biosorption of green and black tea polyphenols into Saccharomyces cerevisiae improves their bioaccessibility. Journal of Functional Foods, 17, 11–21. https://doi.org/10.1016/J.JFF.2015.05.006
- Jilani, H., Cilla, A., Barberá, R., & Hamdi, M. (2016). Improves bioaccessibility and antioxidant capacity of olive leaf (Olea europea L.) polyphenols through biosorption on Saccharomyces cerevisiae. Industrial Crops and Products, 84, 131–138.
- Koehnlein, E. A., Koehnlein, É. M., Corrêa, R. C. G., Nishida, V. S., Correa, V. G., Bracht, A., & Peralta, R. M. (2016). Analysis of a whole diet in terms of phenolic content and antioxidant capacity: Effects of a simulated gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 67(6), 614–623. https://doi.org/10.1080/09637486.2016.1186156
- Lassouane, F., Aït-Amar, H., Amrani, S., & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for bisphenol A removal from aqueous solutions. Bioresource Technology, 271, 360–367. https://doi.org/10.1016/j.biortech.2018.09.129
- Mannino, G., Perrone, A., Campobenedetto, C., Schittone, A., Bertea, C. M., & Gentile, C. (2020). Phytochemical profile and antioxidative properties of Plinia trunciflora fruits: A new source of nutraceuticals. Food Chemistry, 307, 125515. https://doi.org/10.1016/j.foodchem.2019.125515
- Neves, N. D. A., Stringheta, P. C., & Ferreira, I. (2021). Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia spp.) by HPLC-DAD-ESI/MSn. Food Chemistry, 355, 129605. https://doi.org/10.1016/j.foodchem.2021.129605
- Pérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Journal of Agricultural and Food Chemistry, 50(8), 2308–2312. https://doi.org/10.1021/jf0113833
- Priyan, V. V., Shahnaz, T., Kunnumakkara, A. B., Rana, V., Saravanan, M., & Narayanasamy, S. (2021). Antioxidant, anti-inflammatory and biosorption properties of starch nanocrystals in vitro study: Cytotoxic and phytotoxic evaluation. Journal of Cluster Science, 32(5), 1419–1430. https://doi.org/10.1007/s10876-020-01905-5
- Priyan, V. V., Shahnaz, T., Suganya, E., Sivaprakasam, S., & Narayanasamy, S. (2021). Ecotoxicological assessment of micropollutant diclofenac biosorption on magnetic sawdust: Phyto, microbial and fish toxicity studies. Journal of Hazardous Materials, 403, 123532. https://doi.org/10.1016/j.jhazmat.2020.123532
- Quatrin, A., Rampelotto, C., Pauletto, R., Maurer, L. H., Nichelle, S. M., Klein, B., Rodrigues, R. F., Maróstica Junior, M. R., de Souza Fonseca, B., de Menezes, C. R., de Oliveira Mello, R., Rodrigues, E., Bochi, V. C., & Emanuelli, T. (2020). Bioaccessibility and catabolism of phenolic compounds from Jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 65, 103714. https://doi.org/10.1016/j.jff.2019.103714
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Ribeiro, V. R., de Andrade, A. F., Mari, I. P., Stafussa, A. P., Rossetto, R., Maciel, G. M., & Haminiuk, C. W. I. (2019). Bringing together Saccharomyces cerevisiae and bioactive compounds from plants: A new function for a well-known biosorbent. Journal of Functional Foods, 60, 103433. https://doi.org/10.1016/j.jff.2019.103433
- Ribeiro, V. R., Maciel, G. M., Fachi, M. M., Pontarolo, R., de Andrade, A. F., Stafussa, A. P., & Haminiuk, C. W. I. (2019). Improvement of phenolic compound bioaccessibility from yerba mate (Ilex paraguariensis) extracts after biosorption on Saccharomyces cerevisiae. Food Research International, 126, 108623. https://doi.org/10.1016/j.foodres.2019.108623
- Ribeiro, V. R., Maciel, G. M., Fachi, M. M., Pontarolo, R., de Andrade, A. F., Stafussa, A. P., & Haminiuk, C. W. I. (2021). Biosorption of biocompounds from white and green tea in Saccharomyces cerevisiae waste: Study of the secondary metabolites by UPLC-QToF-MS and simulated in vitro gastrointestinal digestion. Food Bioscience, 41, 101001. https://doi.org/10.1016/j.fbio.2021.101001
- Rodrigues, L., Donado-Pestana, C. M., Moura, M. H. C., Rossi e Silva, R., Pessoa, É. V. M., & Genovese, M. I. (2021). Phenolic compounds from Jaboticaba (Plinia Jaboticaba (Vell.) berg) ameliorate intestinal inflammation and associated endotoxemia in obesity. Food Research International, 141, 110139. https://doi.org/10.1016/j.foodres.2021.110139
- Rossetto, R., Maciel, G. M., de Andrade Arruda Fernandes, I., Modkovski, T. A., Semião, M. A., Brugnari, T., & Haminiuk, C. W. I. (2022). Açaí seeds as a prospective biosorbent for acid dyes removal. Chemical and Biochemical Engineering Quarterly, 35(4), 407. https://doi.org/10.15255/CABEQ.2021.1979
- Rossetto, R., Maciel, G. M., Bortolini, D. G., Ribeiro, V. R., & Haminiuk, C. W. I. (2020). Acai pulp and seeds as emerging sources of phenolic compounds for enrichment of residual yeasts (Saccharomyces cerevisiae) through biosorption process. LWT - Food Science and Technology, 128, 109447. https://doi.org/10.1016/j.lwt.2020.109447
- Rubio, F. T. V., Maciel, G. M., da Silva, M. V., Corrêa, V. G., Peralta, R. M., & Haminiuk, C. W. I. (2018). Enrichment of waste yeast with bioactive compounds from grape pomace as an innovative and emerging technology: Kinetics, isotherms and bioaccessibility. Innovative Food Science & Emerging Technologies, 45, 18–28. https://doi.org/10.1016/J.IFSET.2017.09.004
- Shahnaz, T., Bedadeep, D., & Narayanasamy, S. (2022). Investigation of the adsorptive removal of methylene blue using modified nanocellulose. International Journal of Biological Macromolecules, 200, 162–171. https://doi.org/10.1016/j.ijbiomac.2021.12.081
- Shahnaz, T., Vishnu Priyan, V., Jayakumar, A., & Narayanasamy, S. (2022). Magnetic nanocellulose from Cyperus rotundas grass in the absorptive removal of rare earth element cerium (III): Toxicity studies and interpretation. Chemosphere, 287(P2), 131912. https://doi.org/10.1016/j.chemosphere.2021.131912
- Stafussa, A. P., Maciel, G. M., Da Silva Anthero, A. G., Da Silva, M. V., Zielinski, A. A. F., & Haminiuk, C. W. I. (2016). Biosorption of anthocyanins from grape pomace extracts by waste yeast: Kinetic and isotherm studies. Journal of Food Engineering, 169, 53–60. https://doi.org/10.1016/j.jfoodeng.2015.08.016
- Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today's scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757–4774. https://doi.org/10.1007/s13197-019-03952-x
- Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2