Physicochemical and functional properties of aged grains flour from different dry common beans
Juliana Aparecida Correia Bento
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorDaisy Karione Morais
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Investigation, Methodology
Search for more papers by this authorKaren Carvalho Ferreira
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Investigation, Methodology
Search for more papers by this authorCorresponding Author
Priscila Zaczuk Bassinello
Embrapa Rice & Beans, Santo Antônio de Goiás, Brazil
Correspondence
Priscila Zaczuk Bassinello, Brazilian Agricultural Research Company (EMBRAPA) Rice and Beans, Rodovia GO-462, km 12, Zona Rural, CP 179, CEP 75375-000, Santo Antônio de Goiás, Goiás, Brazil
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Writing - review & editing
Search for more papers by this authorRosângela Nunes Carvalho
Embrapa Rice & Beans, Santo Antônio de Goiás, Brazil
Contribution: Investigation, Methodology
Search for more papers by this authorMárcio Caliari
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Resources
Search for more papers by this authorManoel Soares Soares Júnior
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorJuliana Aparecida Correia Bento
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorDaisy Karione Morais
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Investigation, Methodology
Search for more papers by this authorKaren Carvalho Ferreira
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Investigation, Methodology
Search for more papers by this authorCorresponding Author
Priscila Zaczuk Bassinello
Embrapa Rice & Beans, Santo Antônio de Goiás, Brazil
Correspondence
Priscila Zaczuk Bassinello, Brazilian Agricultural Research Company (EMBRAPA) Rice and Beans, Rodovia GO-462, km 12, Zona Rural, CP 179, CEP 75375-000, Santo Antônio de Goiás, Goiás, Brazil
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Writing - review & editing
Search for more papers by this authorRosângela Nunes Carvalho
Embrapa Rice & Beans, Santo Antônio de Goiás, Brazil
Contribution: Investigation, Methodology
Search for more papers by this authorMárcio Caliari
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Resources
Search for more papers by this authorManoel Soares Soares Júnior
Food Science and Technology Department, Federal University of Goiás – UFG, Goiânia, Brazil
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorAbstract
This work describes the functional and nutritional quality of the flour of 10 common beans to verify their potential for application as ingredients in food products. Bean flours were prepared from seven carioca and three colored bean grains. The higher content of protein (25 g·100 g−1), fat (1.5 g·100 g−1), and low carbohydrate (55 g·100 g−1) was found in the pink bean. The purple bean presented the highest phenolic content (54.47 mg·g−1), anthocyanins (76.4 μg·g−1), and antioxidant activity (21.17 μmol Trolox·g−1). The carioca bean flour presented a low content of phytates (4.84 mg·g−1) and tannins (0.0 mg·g−1). Concerning the pasting properties, the bean flour presented a high variation for the final viscosity (227–1,934 cP), setback (147–596 cP). For water solubility and emulsification capacity, carioca bean showed high values (28 g·100 g−1 and 59%, respectively). The aged bean flours may be suitable for various food applications due to their variability in nutritional composition and technological parameters.
Practical applications
We have obtained flours from different aged common beans. Our interest is to expand the use of aged beans as an ingredient (i.e., as flour) by showing its functional and nutritional properties as well its potential for use in various food systems. We show that the aged bean flour presented a potential for application as an ingredient in food products (e.g., soups, creams, pasta, and others). Additionally, bean flours may permit the development of food products with nutritional appeal since beans are an important source of nutrients.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors
Supporting Information
Filename | Description |
---|---|
jfpp16397-sup-0001-FigureS1-S3.docxWord 2007 document , 664.4 KB |
Figure S1-S3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abdel-Aal, E., Ragaee, S., Rabalski, I., Warkentin, T., & Vandenberg, A. (2018). Nutrient content and viscosity of Saskatchewan grown pulses in relation to their cooking quality. Canadian Journal of Plant Science, 99, 67–77. https://doi.org/10.1139/CJPS-2018-0140
- Abdel-Aal el, S. M., Young, J. C., & Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54(13), 4696–4704. https://doi.org/10.1021/jf0606609
- Addinsoft. (2021). XLSTAT statistical and data analysis solution. https://www.xlstat.com
- Ahmed, J., Al-Ruwaih, N., Mulla, M., & Rahman, M. H. (2018). Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT, 91, 191–197. https://doi.org/10.1016/j.lwt.2018.01.054
- Anderson, R., Conway, H. F., Pfeifer, V. F., & Griffin Junior, L. (1969). Gelatinization of corn grits by roll-and extrusion-cooking. Cereal Science Today, 14, 4–12. https://doi.org/10.1002/star.19700220408
- AOAC. (1997). Association of Official Analytical Chemists. Method 985.29—Total dietary fiber in foods. In M. J. Deutsch (Ed.), Official methods of analysis of AOAC international ( 16th ed., Vol. 3, pp. 70–71). Gaitherburg: AOAC.
- AOAC (2016). Association of Official Analytical Chemists. Method 979.09—Total Kjeldahl nitrogen. In G. W. Latimer (Ed.), Official methods of analysis of AOAC international. AOAC.
- Aschemann-Witzel, J., Gantriis, R. F., Fraga, P., & Perez-Cueto, F. J. A. (2020). Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition, 1-10, 3119–3128. https://doi.org/10.1080/10408398.2020.1793730
10.1080/10408398.2020.1793730 Google Scholar
- Bala, M., Handa, S., Mridula, D., & Singh, R. K. (2020). Physicochemical, functional and rheological properties of grass pea (Lathyrus sativus L.) flour as influenced by particle size. Heliyon, 6(11), e05471. https://doi.org/10.1016/j.heliyon.2020.e05471
- Bassinello, P. Z., Bento, J. A. C., Gomes, L. D. O. F., Caliari, M., & Oomah, B. D. (2020). Nutritional value of gluten-free rice and bean based cake mix. Ciência Rural, 50(6), e20190653. https://doi.org/10.1590/0103-8478cr20190653
- Bento, J. A. C., Bassinello, P. Z., Colombo, A. O., Vital, R. J., & Carvalho, R. N. (2020). Nutritional and bioactive components of carioca common bean (Phaseolus vulgaris L.) tempeh and yellow soybean (Glycine max L.) tempeh. Current Nutrition & Food Science, 16, 1–8. https://doi.org/10.2174/1573401316666200121111854
- Bento, J. A. C., Bassinello, P. Z., Colombo, A. O., Vital, R. J., & Carvalho, R. N. (2021). Vegan tempeh burger: Prepared with aged bean grains fermented by Rhizopus oligosporus inoculum. Research, Society and Development, 10(2), e38110212503. https://doi.org/10.33448/rsd-v10i2.12503
10.33448/rsd-v10i2.12503 Google Scholar
- Bento, J. A. C., Bassinello, P. Z., Cruz, Q. A., Mendonça, M. A. D. S., Borba, T. C. D. O., Vanier, N. L., Souza Neto, M. A. D., Ferreira, K. C., Silva, G., & Oliveira, A. L. M. D. (2020). Convenience of non-conventional methods for evaluation of the culinary quality of beans. Research, Society and Development, 9(11), e44491110103. https://doi.org/10.33448/rsd-v9i11.10103
10.33448/rsd?v9i11.10103 Google Scholar
- Bento, J. A. C., Bassinello, P. Z., Morais, D. K., Souza Neto, M. A., Bataus, L. A. M., Carvalho, R. N., Caliari, M., & Júnior, M. S. S. (2021). Pre-gelatinized flours of black and carioca bean by-products: Development of gluten-free instant pasta and baked snacks. International Journal of Gastronomy and Food Science, 25, 100383. https://doi.org/10.1016/j.ijgfs.2021.100383
- Bento, J. A. C., Lanna, A. C., Bassinello, P. Z., Oomah, B. D., Pimenta, M. E. B., Carvalho, R. N., & Moreira, A. S. (2020). Aging indicators for stored carioca beans. Food Research International, 134(109249), 1–11. https://doi.org/10.1016/j.foodres.2020.109249
- Bento, J. A. C., Ribeiro, P. R. V., Alexandre Silva, L. M., Alves Filho, E. G., Bassinello, P. Z., de Brito, E. S., Caliari, M., & Soares Júnior, M. S. (2021). Chemical profile of colorful bean (Phaseolus vulgaris L) flours: Changes influenced by the cooking method. Food Chemistry, 356, 129718. https://doi.org/10.1016/j.foodchem.2021.129718
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/s0023-6438(95)80008-5
- CONAB. (2021). COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da Safra Brasileira de Grãos. In Vol. 8. Boletim - Abril de 2021 Grãos (pp. 117). https://www.conab.gov.br/info-agro/safras/graos
- da Costa, J. G. C., Del Peloso, M. J., de Faria, L. C., Melo, L. C., Diaz, J. L. C., de Carvalho, H. W. L., Warwick, D., Rava, C. A., Pereira, H. S., da Silva, H. T., Sartorato, A., & da Silva, H. T. (2008). BRS Agreste-new beige seeded common bean cultivar with erect plant type and high yield potential. Annual Report-Bean Improvement Cooperative, 51, 272.
- Damodaran, S. (2017). Amino acids, peptides, and proteins. In O. R. Fennema, S. Damodaran, & K. L. Parkin (Eds.), Fennema’s food chemistry ( 5th ed., p. 1107). CRC Press.
- de Faria, L. C., Del Peloso, M. J., da Costa, J. G. C., Rava, C. A., Carneiro, G. E. D. S., Soares, D. M., Cabrera Diaz, J. L., da Silva, H. T., Sartorato, A., de Faria, J. C., & Zimmermann, F. (2004). 'BRS Vereda': New common bean cultivar of the" Rosinha" commercial grain type. Crop Breeding and Applied Biotechnology, 4(2), 264–266.
- de Lima, S. L. S., Gomes, M. J. C., da Silva, B. P., Alves, N. E. G., Toledo, R. C. L., Theodoro, J. M. V., de Castro Moreira, M. E., Bento, J. A. C., Bassinello, P. Z., da Matta, S. L. P., De Mejía, E. G., & Martino, H. S. D. (2019). Whole flour and protein hydrolysate from common beans reduce the inflammation in BALB/c mice fed with high fat high cholesterol diet. Food Research International, 122, 330–339. https://doi.org/10.1016/j.foodres.2019.04.013
- Evangelho, J. A. D., Vanier, N. L., Pinto, V. Z., Berrios, J. J. D., Dias, A. R. G., & Zavareze, E. D. R. (2017). Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chemistry, 214, 460–467. https://doi.org/10.1016/j.foodchem.2016.07.046
- Fan, G., & Beta, T. (2017). Discrimination of geographical origin of Napirira bean (Phaseolus vulgaris L.) based on phenolic profiles and antioxidant activity. Journal of Food Composition and Analysis, 62, 217–222. https://doi.org/10.1016/j.jfca.2017.07.001
- Felker, F. C., Kenar, J. A., Byars, J. A., Singh, M., & Liu, S. X. (2018). Comparison of properties of raw pulse flours with those of jet-cooked, drum-dried flours. LWT-Food Science and Technology, 96, 648–656. https://doi.org/10.1016/j.lwt.2018.06.022
- Fideles, M. C., Bento, J. A. C., Ferreira, K. C., Oliveira, A. L. M. D., Caliari, M., & Soares Júnior, M. S. (2019). Physicochemical and technological characteristics of arrowroot flour modified by ultrasound and low-temperature heat treatment. Ciência Rural, 49(10), e20181037. https://doi.org/10.1590/0103-8478cr20181037
- Foschia, M., Horstmann, S., Arendt, E., & Zannini, E. (2017). Legumes as functional ingredients in gluten-free bakery and pasta products. Annual Review of Food Science and Technology, 8, 75–96. https://doi.org/10.1146/annurev-food-030216-030045
- Gallegos-Infante, J.-A., Rocha-Guzman, N. E., Gonzalez-Laredo, R. F., Ochoa-Martínez, L. A., Corzo, N., Bello-Perez, L. A., Medina-Torres, L., & Peralta-Alvarez, L. E. (2010). Quality of spaghetti pasta containing Mexican common bean flour (Phaseolus vulgaris L.). Food Chemistry, 119(4), 1544–1549. https://doi.org/10.1016/j.foodchem.2009.09.040
- Ganesan, K., & Xu, B. (2017). Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. International Journal of Molecular Sciences, 18(11), 2331. https://doi.org/10.3390/ijms18112331
- Gulia, N., & Khatkar, B. S. (2014). Relationship of dough thermomechanical properties with oil uptake, cooking and textural properties of instant fried noodles. Food Science and Technology International, 20(3), 171–182. https://doi.org/10.1177/1082013213476076
- Gupta, S., Chhabra, G. S., Liu, C., Bakshi, J. S., & Sathe, S. K. (2018). Functional properties of select dry bean seeds and flours. Journal of Food Science, 83(8), 2052–2061. https://doi.org/10.1111/1750-3841.14213
- Haug, W., & Lantzsch, H.-J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12), 1423–1426. https://doi.org/10.1002/jsfa.2740341217
- Jan, R., Saxena, D. C., & Singh, S. (2018). Comparative study of raw and germinated Chenopodium (Chenopodium album) flour on the basis of thermal, rheological, minerals, fatty acid profile and phytocomponents. Food Chemistry, 269, 173–180. https://doi.org/10.1016/j.foodchem.2018.07.003
- Kamau, E. H., Nkhata, S. G., & Ayua, E. O. (2020). Extrusion and nixtamalization conditions influence the magnitude of change in the nutrients and bioactive components of cereals and legumes. Food Science & Nutrition, 8(4), 1753–1765. https://doi.org/10.1002/fsn3.1473
- Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3), 403–411. https://doi.org/10.1016/j.foodchem.2004.06.015
- Kim, Y.-y., Woo, K. S., & Chung, H.-J. (2018). Starch characteristics of cowpea and mungbean cultivars grown in Korea. Food Chemistry, 263, 104–111. https://doi.org/10.1016/j.foodchem.2018.04.114
- Lemken, D., Spiller, A., & Schulze-Ehlers, B. (2019). More room for legume—Consumer acceptance of meat substitution with classic, processed and meat-resembling legume products. Appetite, 143, 104412. https://doi.org/10.1016/j.appet.2019.104412
- Lin, T., & Fernández-Fraguas, C. (2020). Effect of thermal and high-pressure processing on the thermo-rheological and functional properties of common bean (Phaseolus vulgaris L.) flours. LWT-Food Science Technology, 127, 109325. https://doi.org/10.1016/j.lwt.2020.109325
- Liu, D., Li, Z., Fan, Z., Zhang, X., & Zhong, G. (2019). Effect of soybean soluble polysaccharide on the pasting, gels, and rheological properties of kudzu and lotus starches. Food Hydrocolloids, 89, 443–452. https://doi.org/10.1016/j.foodhyd.2018.11.003
- Mamiro, P. S., Mwanri, A. W., Mongi, R. J., Chivaghula, T. J., Nyagaya, M., & Ntwenya, J. (2017). Effect of cooking on tannin and phytate content in different bean (Phaseolus vulgaris) varieties grown in Tanzania. African Journal of Biotechnology, 16(20), 1186–1191. https://doi.org/10.5897/AJB2016.15657
- McClements, D. J., & Decker, E. A. (2017). Lipids. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s food chemistry ( 5th ed., p. 1107). CRC Press.
- Millar, K. A., Gallagher, E., Burke, R., McCarthy, S., & Barry-Ryan, C. (2019). Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. Journal of Food Composition and Analysis, 82, 103233. https://doi.org/10.1016/j.jfca.2019.103233
- Oyeyinka, S. A., Adeloye, A. A., Olaomo, O. O., & Kayitesi, E. (2020). Effect of fermentation time on physicochemical properties of starch extracted from cassava root. Food Bioscience, 33, 100485. https://doi.org/10.1016/j.fbio.2019.100485
- Pérez-Ramírez, I. F., Becerril-Ocampo, L. J., Reynoso-Camacho, R., Herrera, M. D., Guzmán-Maldonado, S. H., & Cruz-Bravo, R. K. (2018). Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats. Journal of the Science of Food and Agriculture, 98(3), 998–1007. https://doi.org/10.1002/jsfa.8548
- Prazeres, K. G. M. D., Andrade, I. H. P., Camilloto, G. P., & Cruz, R. S. (2020). Physicochemical and functional properties of mangalô bean (Lablab purpureus L.) starch. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125706. https://doi.org/10.1016/j.colsurfa.2020.125706
- Price, M. L., Hagerman, A. E., & Butler, L. G. (1980). Tannin content of cowpeas, chickpeas, pigeon peas, and mung beans. Journal of Agricultural and Food Chemistry, 28(2), 459–461. https://doi.org/10.1021/jf60228a047
- Prior, R. L., Fan, E., Ji, H., Howell, A., Nio, C., Payne, M. J., & Reed, J. (2010). Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. Journal of the Science of Food Agriculture, 90(9), 1473–1478. https://doi.org/10.1002/jsfa.3966
- Rava, C. A., de Faria, L. C., da Costa, J. G. C., Del Peloso, M. J., Melo, L. C., Diaz, J. L. C., de Faria, J. C., da Silva, H. T., Sartorato, A., Bassinello, P. Z., & Zimmermann, F. J. P. (2005). BRS Pitanga: New dry bean variety of the small purple group. Crop Breeding and Applied Biotechnology, 5(4), 475–476.
10.12702/1984-7033.v05n04a15 Google Scholar
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3
- Rebello, C. J., Greenway, F. L., & Finley, J. W. (2014). Whole grains and pulses: A comparison of the nutritional and health benefits. Journal of Agricultural and Food Chemistry, 62(29), 7029–7049. https://doi.org/10.1021/jf500932z
- Rios, M. J. B. L., Damasceno-Silva, K. J., dos Reis Moreira-Araújo, R. S., de Figueiredo, E. A. T., de Moura Rocha, M., & Hashimoto, J. M. (2018). Chemical, granulometric and technological characterization of integral flours of commercial caupi-beans. Revista Caatinga, 31(1), 217–224.
- Romero, H. M., & Zhang, Y. (2019). Physicochemical properties and rheological behavior of flours and starches from four bean varieties for gluten-free pasta formulation. Journal of Agriculture and Food Research, 1, 100001. https://doi.org/10.1016/j.jafr.2019.100001
- Rovalino-Córdova, A. M., Fogliano, V., & Capuano, E. (2019). The effect of cell wall encapsulation on macronutrients digestion: A case study in kidney beans. Food Chemistry, 286, 557–566. https://doi.org/10.1016/j.foodchem.2019.02.057
- Santiago-Ramos, D., Figueroa-Cárdenas, J. D. D., Véles-Medina, J. J., & Salazar, R. (2018). Physicochemical properties of nixtamalized black bean (Phaseolus vulgaris L.) flours. Food Chemistry, 240, 456–462. https://doi.org/10.1016/j.foodchem.2017.07.156
- Seidu, K. T., Osundahunsi, O. F., Olaleye, M. T., & Oluwalana, I. B. (2015). Amino acid composition, mineral contents and protein solubility of some lima bean (Phaseolus lunatus l. Walp) seeds coat. Food Research International, 73, 130–134. https://doi.org/10.1016/j.foodres.2015.03.034
- Setia, R., Dai, Z., Nickerson, M. T., Sopiwnyk, E., Malcolmson, L., & Ai, Y. (2019). Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Research International, 122, 263–272. https://doi.org/10.1016/j.foodres.2019.04.021
- Silva, R. C. (2017). A real contribuição da agricultura familiar no Brasil. https://www.embrapa.br/agropensa/busca-de-noticias/-/noticia/27405640/a-real-contribuicao-da-agricultura-familiar-no-brasil
- Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Oxidants and antioxidants part A (Vol. 299, pp. 152–178). Academic Press.
10.1016/S0076-6879(99)99017-1 Google Scholar
- Telles, A. C., Kupski, L., & Furlong, E. B. (2017). Phenolic compound in beans as protection against mycotoxins. Food Chemistry, 214, 293–299. https://doi.org/10.1016/j.foodchem.2016.07.079
- Teng, L. Y., Chin, N. L., & Yusof, Y. A. (2013). Rheological and textural studies of fresh and freeze-thawed native sago starch–sugar gels. II. Comparisons with other starch sources and reheating effects. Food Hydrocolloids, 31(2), 156–165. https://doi.org/10.1016/j.foodhyd.2012.11.002
- Tong, C., Ru, W., Wu, L., Wu, W., & Bao, J. (2020). Fine structure and relationships with functional properties of pigmented sweet potato starches. Food Chemistry, 311, 126011. https://doi.org/10.1016/j.foodchem.2019.126011
- Valdisser, P., Pereira, W. J., Almeida Filho, J. E., Müller, B. S. F., Coelho, G. R. C., de Menezes, I. P. P., … Vianello, R. P. (2017). In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics, 18(1), 423. https://doi.org/10.1186/s12864-017-3805-4
- Wang, N., Hatcher, D. W., Tyler, R. T., Toews, R., & Gawalko, E. J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43(2), 589–594. https://doi.org/10.1016/j.foodres.2009.07.012
- Wani, I. A., Andrabi, S. N., Sogi, D. S., & Hassan, I. (2020). Comparative study of physicochemical and functional properties of flours from kidney bean (Phaseolus vulgaris L.) and green gram (Vigna radiata L.) cultivars grown in Indian temperate climate. Legume. Science, 2(1), e11. https://doi.org/10.1002/leg3.11
- Wani, I. A., Sogi, D. S., Wani, A. A., Gill, B. S., & Shivhare, U. S. (2010). Physico-chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. International Journal of Food Science & Technology, 45(10), 2176–2185. https://doi.org/10.1111/j.1365-2621.2010.02379.x
- Weber, F. H., Collares-Queiroz, F. P., & Chang, Y. K. (2009). Physicochemical, rheological, morphological, and thermal characterization of normal, waxy, and high amylose corn starches. Food Science and Technology, 29(4), 748–753. https://doi.org/10.1590/S0101-20612009000400008
10.1590/S0101?20612009000400008 Google Scholar
- Xu, M., Jin, Z., Peckrul, A., & Chen, B. (2018). Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions. Food Chemistry, 250, 140–147. https://doi.org/10.1016/j.foodchem.2018.01.049
- Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., & Chen, B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry, 295, 579–587. https://doi.org/10.1016/j.foodchem.2019.05.167
- Yadav, U., Singh, N., Kaur, A., & Thakur, S. (2018). Physico-chemical, hydration, cooking, textural and pasting properties of different adzuki bean (Vigna angularis) accessions. Journal of Food Science and Technology, 55(2), 802–810. https://doi.org/10.1007/s13197-017-2994-9
- Zhang, H., Meng, Y., Liu, X., Guan, X., Huang, K., & Li, S. (2019). Effect of extruded mung bean flour on dough rheology and quality of Chinese noodles. Cereal Chemistry, 96(5), 836–846. https://doi.org/10.1002/cche.10184