A comparative analysis of hybrid SVM and LS-SVM classification algorithms to identify dried wolfberry fruits quality based on hyperspectral imaging technology
Adria Nirere
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Conceptualization, Data curation, Formal analysis, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Jun Sun
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Correspondence
Jun Sun, School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Email: [email protected]
Contribution: Funding acquisition, Project administration
Search for more papers by this authorVincent Akolbire Atindana
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Data curation, Investigation, Software
Search for more papers by this authorAhmad Hussain
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Search for more papers by this authorXin Zhou
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Formal analysis, Validation
Search for more papers by this authorKunshan Yao
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Visualization
Search for more papers by this authorAdria Nirere
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Conceptualization, Data curation, Formal analysis, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Jun Sun
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Correspondence
Jun Sun, School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Email: [email protected]
Contribution: Funding acquisition, Project administration
Search for more papers by this authorVincent Akolbire Atindana
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Data curation, Investigation, Software
Search for more papers by this authorAhmad Hussain
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Search for more papers by this authorXin Zhou
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Formal analysis, Validation
Search for more papers by this authorKunshan Yao
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
Contribution: Visualization
Search for more papers by this authorAbstract
A very common preservation method used in food processing is the drying method. Hence it is necessary to properly examine and ascertain how the fruit's quality is affected after drying. Hyperspectral imaging (HSI) technology is one of the advanced technologies adopted for assessing food quality. This study explored the impact of standard normalization variate (SNV) and Savitsky–Golay (SG) data preprocessing and optimization methods on spectral data of dried wolfberry fruits’ quality taken in a range of 400.680–1001.612 nm wavelength. Thus, this research demonstrated that using HSI technology and integrating SG-SVN preprocessing methods to the least square-support vector machine (LS-SVM) model could accurately predict dried wolfberry fruit quality. The prediction accuracy of the LS-SVM algorithm coupled with SG-SVN achieved 96.66%, which was the highest classification accuracy. The study results demonstrated that HSI technology combined with the LS-SVM model is feasible for dried wolfberry fruit quality classification.
Novelty impact statement
Conventional methods of classifying wolfberry fruit quality rely mainly on appearance and human sensory, which is time consuming and lacks accuracy. In this study, hyperspectral imaging technology with the LS-SVM algorithm is used for precise rapid nondestructive classification of wolfberry fruit dried under different temperatures and time frames, respectively.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- Adiletta, G., Russo, P., Senadeera, W., & Di Matteo, M. (2016). Drying characteristics and quality of grape under physical pre-treatment. Journal of Food Engineering, 172, 9–18. https://doi.org/10.1016/j.jfoodeng.2015.06.031
- Ahmad, H., Jun, S., Nirere, A., Naila, S., Zhou, X., & Yao, K. (2021). Classification of tea varieties based on fluorescence hyperspectral image technology and ABC-SVM algorithm. Journal of Food Processing and Preservation, 45(3), e15241. https://doi.org/10.1111/jfpp.15241
- Bagnasco, L., Zotti, M., Sitta, N., & Oliveri, P. (2015). Talanta A PCA-based hyperspectral approach to detect infections by mycophilic fungi on dried porcini mushrooms (boletus edulis and allied species). Talanta, 144, 1225–1230. https://doi.org/10.1016/j.talanta.2015.07.071
- Bicudo, M. O. P., Jó, J., Oliveira, G. A. D., Chaimsohn, F. P., Sierakowski, M. R., Freitas, R. A. D., & Ribani, R. H. (2015). Microencapsulation of juçara (Euterpe edulis M.) pulp by spray drying using different carriers and drying temperatures. Drying Technology, 33(2), 153–161.
- Bucheli, P., Gao, Q., Redgwell, R., Vidal, K., Wang, J., & Zhang, W. (2011). Biomolecular and clinical aspects of Chinese wolfberry. In I. F. F. Benzie & S. Wachtel-Galor (Eds.), Herbal medicine: Biomolecular and clinical aspects ( 2nd ed.). CRC Press/Taylor & Francis. http://www.ncbi.nlm.nih.gov/books/NBK92756/
10.1201/b10787-15 Google Scholar
- Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.
- Byambasuren, S. E., Wang, J., & Gaudel, G. (2019). Medicinal value of wolfberry (Lycium barbarum L.). Journal of Medicinal Plants Studies, 7(4), 90–97.
- Cao, Y., Li, H., Sun, J., Zhou, X., Yao, K., & Nirere, A. (2020). Nondestructive determination of the total mold colony count in green tea by hyperspectral imaging technology. Journal of Food Process Engineering, 43(12), e13570. https://doi.org/10.1111/jfpe.13570
- Chen, X., Li, H., Wu, D., Lei, X., Zhu, X., & Zhang, A. (2010). Application of a hybrid variable selection method for the classification of rapeseed oils based on 1 H NMR spectral analysis. European Food Research and Technology, 230(6), 981–988. https://doi.org/10.1007/s00217-010-1241-7
- Cinquanta, L., Albanese, D., Cuccurullo, G., & Di Matteo, M. (2010). Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven. Journal of Food Science, 75(1), E46–E50. https://doi.org/10.1111/j.1750-3841.2009.01412.x
- Cuccurullo, G., Giordano, L., Albanese, D., Cinquanta, L., & Matteo, M. D. (2012). Infrared thermography assisted control for apples microwave drying. Journal of Food Engineering, 112(4), 319–325. https://doi.org/10.1016/j.jfoodeng.2012.05.003
- Donno, D., Mellano, M. G., Raimondo, E., Cerutti, A. K., Prgomet, Z., & Beccaro, G. L. (2016). Influence of applied drying methods on phytochemical composition in fresh and dried goji fruits by HPLC fingerprint. European Food Research and Technology, 242(11), 1961–1974. https://doi.org/10.1007/s00217-016-2695-z
- Du, K.-L., & Swamy, M. N. S. (2014). Support vector machines. In K.-L. Du & M. N. S. Swamy (Eds.), Neural networks and statistical learning (pp. 469–524). Springer. https://doi.org/10.1007/978-1-4471-5571-3_16
10.1007/978-1-4471-5571-3_16 Google Scholar
- Femenia, A., Simal, S., Taberner, C., & Rosselló, C. (2007). Effects of heat treatment and dehydration on pineapple (Ananas comosus L. Merr) cell walls. International Journal of Food Engineering, 3(2), https://doi.org/10.2202/1556-3758.1097
- Fratianni, A., Niro, S., Alam, M. D. R., Cinquanta, L., Matteo, M. Di, Adiletta, G., & Panfili, G. (2018). Effect of a physical pre-treatment and drying on carotenoids of goji berries (Lycium barbarum L.). LWT - Food Science and Technology, 92, 318–323. https://doi.org/10.1016/j.lwt.2018.02.048
- Ge, X., Sun, J., Lu, B., Chen, Q., Xun, W., & Jin, Y. (2019). Classification of oolong tea varieties based on hyperspectral imaging technology and BOSS-LightGBM model. Journal of Food Process Engineering, 42(8), 1–7. https://doi.org/10.1111/jfpe.13289
- Hussein, Z., Fawole, O. A., & Opara, U. L. (2020). Harvest and postharvest factors affecting bruise damage of fresh fruits. Horticultural Plant Journal, 6(1), 1–13. https://doi.org/10.1016/j.hpj.2019.07.006
- Jakkula, V. (2006). Tutorial on support vector machine (svm) (p. 37). School of EECS, Washington State University.
- Jiang, J., Cen, H., Zhang, C., Lyu, X., Weng, H., Xu, H., & He, Y. (2018). Postharvest biology and technology non-destructive quality assessment of chili peppers using near-infrared hyperspectral imaging combined with multivariate analysis. Postharvest Biology and Technology, 146(September), 147–154. https://doi.org/10.1016/j.postharvbio.2018.09.003
- Jiang, S., Sun, J., Xin, Z., Mao, H., Wu, X., & Li, Q. (2017). Visualizing distribution of pesticide residues in mulberry leaves using NIR hyperspectral imaging. Journal of Food Process Engineering, 40(4), e12510. https://doi.org/10.1111/jfpe.12510
- Juturu, V. (2014). Chapter 82—Polyphenols and cardiometabolic syndrome. In R. R. Watson, V. R. Preedy, & S. Zibadi (Eds.), Polyphenols in human health and disease (pp. 1067–1076). Academic Press. https://doi.org/10.1016/B978-0-12-398456-2.00082-7
10.1016/B978?0?12?398456?2.00082?7 Google Scholar
- Kherif, F., & Latypova, A. (2019). Principal component analysis. Machine Learning: Methods and Applications to Brain Disorders, 1(C), 209–225. https://doi.org/10.1016/B978-0-12-815739-8.00012-2
10.1016/B978?0?12?815739?8.00012?2 Google Scholar
- Laborde, A., Puig-Castellví, F., Jouan-Rimbaud Bouveresse, D., Eveleigh, L., Cordella, C., & Jaillais, B. (2021). Detection of chocolate powder adulteration with peanut using near-infrared hyperspectral imaging and Multivariate Curve Resolution. Food Control, 119(July 2020), 107454. https://doi.org/10.1016/j.foodcont.2020.107454
- Li, Y., Sun, J., Wu, X., Lu, B., Wu, M., & Dai, C. (2019). Grade identification of tieguanyin tea using fluorescence hyperspectra and different statistical algorithms. Journal of Food Science, 84(8), 2234–2241. https://doi.org/10.1111/1750-3841.14706
- Li, Y., Zhang, W., Xiong, Q., Luo, D., Mei, G., & Zhang, T. (2017). A rolling bearing fault diagnosis strategy based on improved multiscale permutation entropy and least squares SVM. Journal of Mechanical Science and Technology, 31(6), 2711–2722. https://doi.org/10.1007/s12206-017-0514-5
- Liu, C., Liu, W., Lu, X., Chen, W., Chen, F., Yang, J., & Zheng, L. (2016). Non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants using multispectral imaging and chemometric methods. The Journal of Agricultural Science, 154(1), 1–12. https://doi.org/10.1017/S0021859614001142
- Lu, X., Sun, J., Mao, H., Wu, X., & Gao, H. (2017). Quantitative determination of rice starch based on hyperspectral imaging technology. International Journal of Food Properties, 20(May), S1037–S1044. https://doi.org/10.1080/10942912.2017.1326058
- Naik, G. R. (Ed.). (2018). Advances in principal component analysis. Springer Singapore. https://doi.org/10.1007/978-981-10-6704-4
10.1007/978-981-10-6704-4 Google Scholar
- Nep, E. I., & Conway, B. R. (2011). Physicochemical characterization of grewia polysaccharide gum : Effect of drying method. Carbohydrate Polymers, 84(1), 446–453. https://doi.org/10.1016/j.carbpol.2010.12.005
- Pallas, L. A., Pegg, R. B., Shewfelt, R. L., & Kerr, W. L. (2012). The role of processing conditions on the color and antioxidant retention of jet tube fluidized bed–dried blueberries. Drying Technology, 30(14), 1600–1609. https://doi.org/10.1080/07373937.2012.700672
- Pan, L., Zhang, W., Sun, Y., Gu, X., Ma, L., Li, Z., & Tu, K. (2016). Gender determination of early chicken hatching eggs embryos by hyperspectral imaging. Transactions of the Chinese Society of Agricultural Engineering, 32(1), 181–186.
- Parvin, S. (2015). Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. American Journal of Life Sciences, 3(4), 274. https://doi.org/10.11648/j.ajls.20150304.14
- Peng, X., Li, X., Shi, X., & Guo, S. (2014). Evaluation of the aroma quality of Chinese traditional soy paste during storage based on principal component analysis. Food Chemistry, 151, 532–538. https://doi.org/10.1016/j.foodchem.2013.11.095
- Pu, H., Sun, D. W., Ma, J., & Cheng, J. H. (2014). Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis. Meat Science, 99, 81–88. https://doi.org/10.1016/j.meatsci.2014.09.001
- Ran, L., Chen, F., Zhang, J., Mi, J., Lu, L., Yan, Y., Chen, F., Zhang, J., Mi, J., Lu, L., & Yan, Y. (2019a). Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Research International, 130, 108952. https://doi.org/10.1016/j.foodres.2019.108952
- Ran, L., Chen, F., Zhang, J., Mi, J., Lu, L., Yan, Y., Chen, F., Zhang, J., Mi, J., Lu, L., & Yan, Y. (2019b). Antitumor effects of pollen polysaccharides from Chinese wolfberry on DU145 cells via the PI3K/AKT pathway in vitro and in vivo. International Journal of Biological Macromolecules, 152, 1164–1173. https://doi.org/10.1016/j.ijbiomac.2019.10.206
- Seema, Ghosh, A. K., Das, B. S., & Reddy, N. (2020). Application of VIS-NIR spectroscopy for estimation of soil organic carbon using different spectral preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India. Geoderma Regional, 23, e00349. https://doi.org/10.1016/j.geodrs.2020.e00349
- Sun, J., Jiang, S., Mao, H., Wu, X., & Li, Q. (2016). Classification of black beans using visible and near infrared hyperspectral imaging. International Journal of Food Properties, 19(8), 1687–1695. https://doi.org/10.1080/10942912.2015.1055760
- Sun, J. U. N., Lu, X., Mao, H., Wu, X., & Gao, H. (2016). Quantitative determination of rice moisture based on hyperspectral imaging technology and bcc-ls-svr algorithm. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.12446
- Sun, J., Ge, X., Wu, X., Dai, C., & Yang, N. (2018). Identification of pesticide residues in lettuce leaves based on near infrared transmission spectroscopy. Journal of Food Process Engineering, 41(6), e12816. https://doi.org/10.1111/jfpe.12816
- Sun, J., Tang, K., Wu, X., Dai, C., Chen, Y., & Shen, J. (2018). Nondestructive identification of green tea varieties based on hyperspectral imaging technology. Journal of Food Process Engineering, 41(5), e12800. https://doi.org/10.1111/jfpe.12800
- Sunli, C., Jun, S., Hanping, M., Xiaohong, W., Pei, W., & Xiaodong, Z. (2018). Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR. Journal of the Science of Food and Agriculture, 98(4), 1453–1459. https://doi.org/10.1002/jsfa.8613
- Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300. https://doi.org/10.1023/A:1018628609742
- Syvilay, D., Wilkie-Chancellier, N., Trichereau, B., Texier, A., Martinez, L., Serfaty, S., & Detalle, V. (2015). Evaluation of the standard normal variate method for Laser-Induced Breakdown Spectroscopy data treatment applied to the discrimination of painting layers. Spectrochimica Acta Part B: Atomic Spectroscopy, 114, 38–45. https://doi.org/10.1016/j.sab.2015.09.022
- Tahmasbian, I., Morgan, N. K., Hosseini Bai, S., Dunlop, M. W., & Moss, A. F. (2021). Comparison of hyperspectral imaging and near-infrared spectroscopy to determine nitrogen and carbon concentrations in wheat. Remote Sensing, 13(6), 1128. https://doi.org/10.3390/rs13061128
- Tang, N., Sun, J., Yao, K., Zhou, X., Tian, Y., Cao, Y., & Nirere, A. (2020). Identification of Lycium barbarum varieties based on hyperspectral imaging technique and competitive adaptive reweighted sampling-whale optimization algorithm-support vector machine. Journal of Food Process Engineering, October, 1–11. https://doi.org/10.1111/jfpe.13603
- Tingting, S., Xiaobo, Z., Jiyong, S., Zhihua, L., Xiaowei, H., Yiwei, X., & Wu, C. (2016). Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics. Food Analytical Methods, 9(1), 68–79. https://doi.org/10.1007/s12161-015-0175-x
- Vapnik, V. (1998). The support vector method of function estimation. In J. A. K. Suykens, & J. Vandewalle (Eds.), Nonlinear modeling. Springer. https://doi.org/10.1007/978-1-4615-5703-6_3
10.1007/978-1-4615-5703-6_3 Google Scholar
- Wu, D., Nie, P., He, Y., Wang, Z., & Wu, H. (2013). Spectral multivariable selection and calibration in visible-shortwave near-infrared spectroscopy for non-destructive protein assessment of spirulina microalga powder. International Journal of Food Properties, 16(5), 1002–1015.
- Yajun, W., Xiaojie, L., Sujuan, G., Yuekun, L. I., Bo, Z., Yue, Y., Wei, A. N., Youlong, C., & Jianhua, Z. (2019). Evaluation of nutrients and related environmental factors for wolfberry (Lycium barbarum) fruits grown in the different areas of China. Biochemical Systematics and Ecology, 86, 103916. https://doi.org/10.1016/j.bse.2019.103916
- Yao, K., Sun, J., Zhou, X., Nirere, A., Tian, Y., & Wu, X. (2020). Nondestructive detection for egg freshness grade based on hyperspectral imaging technology. Journal of Food Process Engineering, 43(7), e13422. https://doi.org/10.1111/jfpe.13422
- Yasin, B. R., El-Fawal, H. A. N., & Mousa, S. A. (2015). Date (Phoenix dactylifera) polyphenolics and other bioactive compounds: A traditional islamic remedy’s potential in prevention of cell damage, cancer therapeutics and beyond. International Journal of Molecular Sciences, 16(12), 30075–30090. https://doi.org/10.3390/ijms161226210
- Yousefi, S., Emam-Djomeh, Z., Mousavi, M., Kobarfard, F., & Zbicinski, I. (2014). Retention rate enhancement of antioxidant and cyaniding 3-O-glucoside components of the reconstituted product from spray-dried black raspberry juice by optimizing process parameters. Drying Technology, 32(14), 1683–1691.
- Yun, C., Jun, C., Yun, C., Yalei, W., & Jun, C. (2018). Recognition of the position of Chinese wolfberry branches under the artificial background. IFAC-PapersOnLine, 51(17), 321–325.
10.1016/j.ifacol.2018.08.198 Google Scholar
- Yusup, N., Zain, A. M., & Latib, A. A. (2019). A review of Harmony Search algorithm-based feature selection method for classification. Journal of Physics: Conference Series, 1192(1), 012038. IOP Publishing. https://doi.org/10.1088/1742-6596/1192/1/012038
10.1088/1742?6596/1192/1/012038 Google Scholar
- Zhang, L., Sun, J., Zhou, X., Nirere, A., Wu, X., & Dai, R. (2020). Classification detection of saccharin jujube based on hyperspectral imaging technology. Journal of Food Processing and Preservation, 44(8), 1–9. https://doi.org/10.1111/jfpp.14591
- Zhang, Z., Ding, J., Zhu, C., & Wang, J. (2020). Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 240, 118553. https://doi.org/10.1016/j.saa.2020.118553
- Zhao, H. T., Feng, Y. Z., Chen, W., & Jia, G. F. (2019). Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Meat Science, 151(May, 2018), 75–81. https://doi.org/10.1016/j.meatsci.2019.01.010
- Zhou, X., Jun, S., Zhang, B., & Jun, W. (2017). Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm. Modern Physics Letters B, 31(19–21), 1–6. https://doi.org/10.1142/S0217984917400826
- Zhou, Z.-Q., Xiao, J., Fan, H.-X., Yu, Y., He, R.-R., Feng, X.-L., Kurihara, H., So, K.-F., Yao, X.-S., & Gao, H. (2017). Polyphenols from wolfberry and their bioactivities. Food Chemistry, 214, 644–654. https://doi.org/10.1016/j.foodchem.2016.07.105
- Zou, H., & Xue, L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE, 106(8), 1311–1320. https://doi.org/10.1109/JPROC.2018.2846588