Optimizing conditions for the development of a composite film from seaweed hydrocolloids and pectin derived from a fruit waste, gac pulp
Corresponding Author
Thuy Thi Bich Tran
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam
Correspondence
Thuy Thi Bich Tran and Quan Van Vuong, School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales 2258, Australia.
Email: [email protected]; [email protected]
Contribution: Data curation, Formal analysis, Methodology, Project administration, Validation, Writing - original draft, Writing - review & editing
Search for more papers by this authorQuyen Le Vu
Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam
Contribution: Methodology, Resources
Search for more papers by this authorPenta Pristijono
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Contribution: Methodology, Supervision, Writing - review & editing
Search for more papers by this authorTim Kirkman
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Contribution: Formal analysis, Supervision, Writing - review & editing
Search for more papers by this authorMinh Huu Nguyen
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
Contribution: Methodology, Software, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Quan Van Vuong
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Correspondence
Thuy Thi Bich Tran and Quan Van Vuong, School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales 2258, Australia.
Email: [email protected]; [email protected]
Contribution: Formal analysis, Methodology, Software, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Thuy Thi Bich Tran
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam
Correspondence
Thuy Thi Bich Tran and Quan Van Vuong, School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales 2258, Australia.
Email: [email protected]; [email protected]
Contribution: Data curation, Formal analysis, Methodology, Project administration, Validation, Writing - original draft, Writing - review & editing
Search for more papers by this authorQuyen Le Vu
Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam
Contribution: Methodology, Resources
Search for more papers by this authorPenta Pristijono
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Contribution: Methodology, Supervision, Writing - review & editing
Search for more papers by this authorTim Kirkman
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Contribution: Formal analysis, Supervision, Writing - review & editing
Search for more papers by this authorMinh Huu Nguyen
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
Contribution: Methodology, Software, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Quan Van Vuong
School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia
Correspondence
Thuy Thi Bich Tran and Quan Van Vuong, School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales 2258, Australia.
Email: [email protected]; [email protected]
Contribution: Formal analysis, Methodology, Software, Supervision, Writing - review & editing
Search for more papers by this authorAbstract
Recently, edible films and coatings have received more attention instead of plastic packaging. Pectin prepared from gac pulp, a waste generated from gac oil production, was used to prepare edible films combined with seaweed hydrocolloids. This study aimed to investigate the impact of sodium alginate (SA), kappa-carrageenan (KC), and gac pulp pectin (GPP) on the physical, barrier, and mechanical properties of the resultant films. The optimum formula with the best characteristics was identified using Response Surface Methodology (RSM). Results revealed that most of the film properties were significantly influenced by seaweed hydrocolloids, while GPP significantly affected color properties. Besides, the interaction between GPP and seaweed hydrocolloids affected the water vapor permeability and mechanical properties. The optimum formula was SA of 1.28% w/v, KC of 0.58% w/v, and GPP of 0.25% w/v. The result suggests that this formula has the potential as an edible film for further applications in foods.
Novelty impact statement
A composite edible film with great physical and mechanical properties can be developed from an optimal formulation of sodium alginate, kappa-carrageenan, and gac pulp pectin, derived from a waste of the oil production. This film is potentially applied for coating and preservation of foods to improve their properties and shelf-life.
CONFLICTS OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the research findings of this study are available from the corresponding author on request.
REFERENCES
- Abdul Khalil, H. P. S., Lai, T. K., Tye, Y. Y., Rizal, S., Chong, E. W. N., Yap, S. W., Hamzah, A. A., Nurul Fazita, M. R., & Paridah, M. T. (2018). A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polymer Letters, 12(4), 296–317. https://doi.org/10.3144/expresspolymlett.2018.27
- Alves, V. D., Castelló, R., Ferreira, A. R., Costa, N., Fonseca, I. M., & Coelhoso, I. M. (2011). Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, 1, 240–245. https://doi.org/10.1016/j.profoo.2011.09.038
- Alves, V., Rico, B., Cruz, R., Vicente, A., Khmelinskii, I., & Vieira, M. C. (2018). Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). LWT, 89, 525–534. https://doi.org/10.1016/j.lwt.2017.11.013
- ASTM. (2013). Standard test methods for water vapor transmission of materials. ASTM International.
- Beg, S., & Akhter, S. (2021). Box-Behnken designs and their applications in pharmaceutical product development. In S. Beg (Ed.), Design of experiments for pharmaceutical product development. Springer. https://doi.org/10.1007/978-981-33-4717-5_7
10.1007/978-981-33-4717-5_7 Google Scholar
- Bergo, P., Moraes, I. C. F., & Sobral, P. J. A. (2013). Effects of plasticizer concentration and type on moisture content in gelatin films. Food Hydrocolloids, 32(2), 412–415. https://doi.org/10.1016/j.foodhyd.2013.01.015
- Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019
- Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., Rocha, C. M. R., Avides, M. C., Quintas, M. A. C., & Vicente, A. A. (2011). Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 106(2), 111–118. https://doi.org/10.1016/j.jfoodeng.2011.03.024
- Chen, J., Wu, A., Yang, M., Ge, Y., Pristijono, P., Li, J., Xu, B., & Mi, H. (2021). Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control, 126, 108063. https://doi.org/10.1016/j.foodcont.2021.108063
- Chetouani, A., Follain, N., Marais, S., Rihouey, C., Elkolli, M., Bounekhel, M., Benachour, D., & Le Cerf, D. (2017). Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. International Journal of Biological Macromolecules, 97, 348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.018
- Dadalı, G., Kılıç Apar, D., & Özbek, B. (2007). Color change kinetics of okra undergoing microwave drying. Drying Technology, 25(5), 925–936. https://doi.org/10.1080/07373930701372296
- Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505–513. https://doi.org/10.1016/j.foodchem.2017.07.034
- Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. D. J., Soares, N. D. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties – A review. Food Hydrocolloids, 35, 287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005
- Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303. https://doi.org/10.1016/j.tifs.2011.02.004
- Farahnaky, A., Saberi, B., & Majzoobi, M. (2013). Effect of glycerol on physical and mechanical properties of wheat starch edible films. Journal of Texture Studies, 44(3), 176–186. https://doi.org/10.1111/jtxs.12007
- Galus, S., & Kadzińska, J. (2016). Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil. Food Technology and Biotechnology, 54(1), 78–89. https://doi.org/10.17113/ftb.54.01.16.3889
- Galus, S., & Lenart, A. (2013). Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering, 115(4), 459–465. https://doi.org/10.1016/j.jfoodeng.2012.03.006
- Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science & Emerging Technologies, 11(4), 697–702. https://doi.org/10.1016/j.ifset.2010.06.001
- Gharibzahedi, S. M. T., Smith, B., & Guo, Y. (2019). Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules, 136, 275–283. https://doi.org/10.1016/j.ijbiomac.2019.06.040
- Hambleton, A., Voilley, A., & Debeaufort, F. (2011). Transport parameters for aroma compounds through i-carrageenan and sodium alginate-based edible films. Food Hydrocolloids, 25(5), 1128–1133. https://doi.org/10.1016/j.foodhyd.2010.10.010
- Han, J. H. (2014). Chapter 9 - Edible films and coatings: A review. In J. H. Han (Ed.), Innovations in food packaging, 2nd ed. (pp. 213–255). Academic Press. https://doi.org/10.1016/B978-0-12-394601-0.00009-6
10.1016/B978-0-12-394601-0.00009-6 Google Scholar
- Han, J. H. (2014). Chapter 9 - Edible films and coatings: A review. J. H. Han (Ed.), Innovations in food packaging (2nd ed. pp. 213–255). Academic Press. 10.1016/B978-0-12-394601-0.00009-6.
- Han, J. H. (2014). Chapter 9 - Edible films and coatings: A review. In J. H. Han (Ed.), Innovations in food packaging, 2nd ed. (pp. 213–255). Academic Press. https://doi.org/10.1016/B978-0-12-394601-0.00009-6
10.1016/B978-0-12-394601-0.00009-6 Google Scholar
- Kanmani, P., & Rhim, J.-W. (2014). Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers, 102, 708–716. https://doi.org/10.1016/j.carbpol.2013.10.099
- Kubola, J., & Siriamornpun, S. (2011). Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chemistry, 127(3), 1138–1145. https://doi.org/10.1016/j.foodchem.2011.01.115
- Kurek, M., Descours, E., Galic, K., Voilley, A., & Debeaufort, F. (2012). How composition and process parameters affect volatile active compounds in biopolymer films. Carbohydrate Polymers, 88(2), 646–656. https://doi.org/10.1016/j.carbpol.2012.01.012
- Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369–375. https://doi.org/10.1016/j.carbpol.2007.09.002
- Maran, J. P., Sivakumar, V., Sridhar, R., & Thirugnanasambandham, K. (2013). Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate Polymers, 92(2), 1335–1347. https://doi.org/10.1016/j.carbpol.2012.09.069
- Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., & Rimac Brnčić, S. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28–37. https://doi.org/10.1016/j.tifs.2018.03.022
- Milani, J., & Maleki, G. (2012). Hydrocolloids in food industry, food industrial processes - methods and equipment, Benjamin Valdez. IntechOpen. https://doi.org/10.5772/32358
- Minjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers, 106, 179–189. https://doi.org/10.1016/j.carbpol.2014.02.013
- Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M.-A.-M. (2020). Polysaccharides, protein and lipid -based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
- Nur Fatin, N. R., & Nur Hanani, Z. A. (2017). Physicochemical characterization of kappa-carrageenan (Euchema cottoni) based films incorporated with various plant oils. Carbohydrate Polymers, 157, 1479–1487. https://doi.org/10.1016/j.carbpol.2016.11.026
- Oliveira, S. M., Ramos, I. N., Brandão, T. R. S., & Silva, C. L. M. (2015). Effect of air-drying temperature on the quality and bioactive characteristics of dried galega kale (Brassica oleraceaL. var. Acephala). Journal of Food Processing and Preservation, 39(6), 2485–2496. https://doi.org/10.1111/jfpp.12498
- Otoni, C. G., Avena-Bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V., Moura, M. R., Mattoso, L. H. C., & McHugh, T. H. (2017). Recent advances on edible films based on fruits and vegetables—A review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151–1169. https://doi.org/10.1111/1541-4337.12281
- Parks, S. E., Murray, C. T., Gale, D. L., Al-Khawaldeh, B., & Spohr, L. J. (2013). Propagation and production of GAC (Momordica Cochinchinensis Spreng), a greenhouse case study. Experimental Agriculture, 49(2), 234–243. https://doi.org/10.1017/S0014479712001081
- .
- Paşcalău, V., Popescu, V., Popescu, G. L., Dudescu, M. C., Borodi, G., Dinescu, A., Perhaiţa, I., & Paul, M. (2012). The alginate/k-carrageenan ratio's influence on the properties of the cross-linked composite films. Journal of Alloys and Compounds, 536, S418–S423. https://doi.org/10.1016/j.jallcom.2011.12.026
- Paula, G. A., Benevides, N. M. B., Cunha, A. P., de Oliveira, A. V., Pinto, A. M. B., Morais, J. P. S., & Azeredo, H. M. C. (2015). Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate. Food Hydrocolloids, 47, 140–145. https://doi.org/10.1016/j.foodhyd.2015.01.004
- Rangel-Marrón, M., Montalvo-Paquini, C., Palou, E. & López-Malo, A. (2013). Optimization of the moisture content, thickness, water solubility and water vapor permeability of sodium alginate edible films. Prosiding. Recent Advances in Chemical Engineering, Biochemistry and Computational Chemistry. Paris, Perancis.
- Rao, M., Kanatt, S., Chawla, S., & Sharma, A. (2010). Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers, 82(4), 1243–1247. https://doi.org/10.1016/j.carbpol.2010.06.058
- Ribeiro Sanches, M. A., Camelo-Silva, C., Tussolini, L., Tussolini, M., Zambiazi, R. C., & Becker Pertuzatti, P. (2021). Development, characterization and optimization of biopolymers films based on starch and flour from jabuticaba (Myrciaria cauliflora) peel. Food Chemistry, 343, 128430. https://doi.org/10.1016/j.foodchem.2020.128430
- Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342–352. https://doi.org/10.1016/j.indcrop.2016.04.015
- Saberi, B., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016). Mechanical and physical properties of pea starch edible films in the presence of glycerol. Journal of Food Processing and Preservation, 40(6), 1339–1351. https://doi.org/10.1111/jfpp.12719
- Salgado, P. R., Ortiz, C. M., Musso, Y. S., Di Giorgio, L., & Mauri, A. N. (2015). Edible films and coatings containing bioactives. Current Opinion in Food Science, 5, 86–92. https://doi.org/10.1016/j.cofs.2015.09.004
- Shahrampour, D., Khomeiri, M., Razavi, S. M. A., & Kashiri, M. (2020). Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC 45. LWT, 118, 108758. https://doi.org/10.1016/j.lwt.2019.108758
- Silva, M. A. D., Bierhalz, A. C. K., & Kieckbusch, T. G. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77(4), 736–742. https://doi.org/10.1016/j.carbpol.2009.02.014
- Siracusa, V., Romani, S., Gigli, M., Mannozzi, C., Cecchini, J. P., Tylewicz, U., & Lotti, N. (2018). Characterization of active edible films based on citral essential oil, Alginate and Pectin. Materials, 11(10), 1980. https://doi.org/10.3390/ma11101980
- Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360–374. https://doi.org/10.1016/j.carbpol.2015.10.074
- Thakur, R., Saberi, B., Pristijono, P., Golding, J., Stathopoulos, C., Scarlett, C., Bowyer, M., & Vuong, Q. (2016). Characterization of rice starch-ι-carrageenan biodegradable edible film. Effect of stearic acid on the film properties. International Journal of Biological Macromolecules, 93, 952–960. https://doi.org/10.1016/j.ijbiomac.2016.09.053
- Thakur, R., Saberi, B., Pristijono, P., Stathopoulos, C. E., Golding, J. B., Scarlett, C. J., Bowyer, M., & Vuong, Q. V. (2017). Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. Journal of Food Science and Technology, 54(8), 2270–2278. https://doi.org/10.1007/s13197-017-2664-y
- Tran, T. T. B., Roach, P., Nguyen, M. H., Pristijono, P., & Vuong, Q. V. (2020). Development of biodegradable films based on seaweed polysaccharides and Gac pulp (Momordica cochinchinensis), the waste generated from Gac oil production. Food Hydrocolloids, 99, 105322. https://doi.org/10.1016/j.foodhyd.2019.105322
- Vuong, Q. V., Nguyen, V. T., Thanh, D. T., Bhuyan, D. J., Goldsmith, C. D., Sadeqzadeh, E., Scarlett, C. J., & Bowyer, M. C. (2015). Optimization of ultrasound-assisted extraction conditions for euphol from the medicinal plant, Euphorbia tirucalli, using response surface methodology. Industrial Crops and Products, 63, 197–202. https://doi.org/10.1016/j.indcrop.2014.09.057
- Wu, Y., Geng, F., Chang, P. R., Yu, J., & Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers, 76(2), 299–304. https://doi.org/10.1016/j.carbpol.2008.10.031
- Xiao, Q., Gu, X., & Tan, S. (2014). Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy. Food Chemistry, 164, 179–184. https://doi.org/10.1016/j.foodchem.2014.05.044
- Zhang, C., Wang, C., Cao, G., Wang, D., & Ho, S.-H. (2020). A sustainable solution to plastics pollution: An eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues. Journal of Hazardous Materials, 388, 121773. https://doi.org/10.1016/j.jhazmat.2019.121773
- Zhang, S., Kim, N., Yokoyama, W., & Kim, Y. (2018). Effects of moisture content on mechanical properties, transparency, and thermal stability of yuba film. Food Chemistry, 243, 202–207. https://doi.org/10.1016/j.foodchem.2017.09.127
- Zhang, Y., Ma, Q., Critzer, F., Davidson, P. M., & Zhong, Q. (2015). Physical and antibacterial properties of alginate films containing cinnamon bark oil and soybean oil. LWT – Food Science and Technology, 64(1), 423–430. https://doi.org/10.1016/j.lwt.2015.05.008