Polymeric nanoparticles loaded with Baccharis dracunculifolia DC essential oil: Preparation, characterization, and antibacterial activity in milk
Palmira Penina Raúl Timbe
Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorAmanda de Souza da Motta
Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorHenrique Ataíde Isaía
Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorCorresponding Author
Adriano Brandelli
Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Adriano Brandelli, Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, ICTA-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorPalmira Penina Raúl Timbe
Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorAmanda de Souza da Motta
Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorHenrique Ataíde Isaía
Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorCorresponding Author
Adriano Brandelli
Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Adriano Brandelli, Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, ICTA-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
Eudragit RS100 nanoparticles containing Baccharis dracunculifolia DC essential oil (N-EO) was developed by the nanoprecipitation method. N-EO presented an average diameter of 151.6 nm, zeta potential (ζ) of +51.7 mV, and encapsulation efficiency of 99.4%. The antibacterial activity of N-EO and free essential oil (EO) was evaluated in BHI broth against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, and Salmonella Enteritidis. No viable cell counts were detected for all strains tested up to 4 hr incubation with EO. The same effect was achieved at 24 hr by the N-EO, suggesting a controlled release of encapsulated EO. The antimicrobial activity was also tested against L. monocytogenes in milk. Both EO and N-EO lack antibacterial effect in whole milk, while a delayed lag phase was observed in skimmed milk. The N-EO caused no significant lysis of erythrocytes suggesting that it can be safe to eukaryotic cells.
Practical applications
The results of this work suggest that Eudragit nanoparticles can be suitable carriers for essential oils, maintaining their antimicrobial activities. Nanoparticle encapsulation may be useful for food applications by hiding the intense flavor of EO and providing a controlled release of bioactive components. The reduced activity in milk suggests the interaction between the nanostructures and EO with food components, which merits additional studies.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
REFERENCES
- Alegbeleye, O. O., Guimarães, J. T., Cruz, A. G., & Sant'Ana, A. S. (2018). Hazards of a ‘healthy’ trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends in Food Science and Technology, 82, 148–166. https://doi.org/10.1016/j.tifs.2018.10.007
- Amatiste, S., Sagrafoli, D., Giacinti, G., Rosa, G., Carfora, V., Marri, N., … Rosati, R. (2014). Antimicrobial activity of essential oils against Staphylococcus aureus in fresh sheep cheese. Italian Journal of Food Safety, 3, 148–150. https://doi.org/10.4081/ijfs.2014.1696
10.4081/ijfs.2014.1696 Google Scholar
- Badri, W., Miladi, K., Nazari, Q. A., Fessi, H., & Elaissari, A. (2017). Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, 238–244. https://doi.org/10.1016/j.colsurfa.2016.12.029
- Bai, X., Liu, F., Liu, Y., Li, C., Wang, S., Zhou, H., … Yan, B. (2017). Toward a systematic exploration of nano-bio interactions. Toxicology and Applied Pharmacology, 323, 66–73. https://doi.org/10.1016/j.taap.2017.03.011
- Brum, L. F. W., Santos, C., Gnoatto, J. A., Moura, D. J., Santos, J. H. Z., & Brandelli, A. (2019). Silica xerogels as novel streptomycin delivery platforms. Journal of Drug Delivery Science and Technology, 53, 101210. https://doi.org/10.1016/j.ddst.2019.101210
- Buchanan, R. L., Gorris, L. G. M., Hayman, M. M., Jackson, T. C., & Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75, 1–13. https://doi.org/10.1016/j.foodcont.2016.12.016
- Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
- Cacciatore, F. A., Dalmás, M., Maders, C., Isaia, H. A., Brandelli, A., & Malheiros, P. S. (2020). Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Research International, 133, 109143. 101016/j.foodres.2020.109143
- Cai, K., Wang, A. Z., Yin, L., & Cheng, J. (2017). Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. Journal of Controlled Release, 263, 211–222. https://doi.org/10.1016/j.jconrel.2016.11.034
- Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems—A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
- Cazella, L. N., Glamoclija, J., Soković, M., Gonçalves, J. E., Linde, G. A., Colauto, N. B., & Gazim, Z. C. (2019). Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Frontiers in Plant Science, 10, 27. https://doi.org/10.3389/fpls.2019.00027
- Chaves, P. S., Ourique, A. F., Frank, L. A., Pohlmann, A. R., Guterres, S. S., & Beck, R. C. R. (2017). Carvedilol-loaded nanocapsules: Mucoadhesive properties and permeability across the sublingual mucosa. European Journal of Pharmaceutics and Biopharmaceutics, 114, 88–95. https://doi.org/10.1016/j.ejpb.2017.01.007
- Chrysargyris, A., Xylia, P., Botsaris, G., & Tzortzakis, N. (2017). Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Industrial Crops and Products, 103, 202–212. https://doi.org/10.1016/j.indcrop.2017.04.010
- Coma-Cros, E. M., Biosca, A., Lantero, E., Manca, M. L., Caddeo, C., Gutiérrez, L., … Fernàndez-Busquets, X. (2018). Antimalarial activity of orally administered curcumin incorporated in Eudratit®-containing liposomes. International Journal of Molecular Sciences, 19, 1361. https://doi.org/10.3390/ijms19051361
- Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering C, 80, 771–784. https://doi.org/10.1016/j.msec.2017.06.004
- Dadar, M., Shahali, Y., & Whatmore, A. M. (2019). Human brucellosis caused by raw dairy products: A review on the occurrence, major risk factors and prevention. International Journal of Food Microbiology, 292, 39–47. https://doi.org/10.1016/j.ijfoodmicro.2018.12.009
- Dalcin, A. J. F., Santos, C. G., Gündel, S. S., Roggia, I., Raffin, R. P., Ourique, A. F., … Gomes, P. (2017). Anti biofilm effect of dihydromyricetin-loaded nanocapsules on urinary catheter infected by Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 156, 282–291. https://doi.org/10.1016/j.colsurfb.2017.05.029
- Dalcin, A. J. F., Vizzotto, B. S., Bochi, G. V., Guarda, N. S., Nascimento, K., Sagrillo, M. R., … Gomes, P. (2019). Nanoencapsulation of the flavonoid dihydromyricetin protects against the genotoxicity and cytotoxicity induced by cationic nanocapsules. Colloids and Surfaces B: Biointerfaces, 173, 798–805. https://doi.org/10.1016/j.colsurfb.2018.10.066
- de Carvalho, R. J., de Souza, G. T., Honório, V. G., de Sousa, J. P., da Conceição, M. L., Maganani, M., & de Souza, E. L. (2015). Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiology, 52, 59–65. https://doi.org/10.1016/j.fm.2015.07.003
- de Matos, S. P., Lucca, L. G., & Koester, L. S. (2019). Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta, 195, 204–214. https://doi.org/10.1016/j.talanta.2018.11.029
- Fabri, N. T., Gatto, L. J., Furusho, A. S., Garcia, M. J. B., Marques, F. A., Miguel, M. D., … Dias, J. F. G. (2019). Composition, antioxidant properties, and biological activities of the essential oil extracted from Ocotea diospyrifolia (Meisn.) Mez. Brazilian Journal of Pharmaceutical Sciences, 55, e18471. https://doi.org/10.1590/s2175-97902019000218471
- Food and Agriculture Organization. (2019). Food outlook-biannual report on global food markets, global information and early warning system on food and agriculture. Rome, Italy: Author. https://doi.org/10.1044/leader.PPL.19102014.18
- Froiio, F., Ginot, L., Paolino, D., Lebaz, N., Bentaher, A., Fessi, H., & Elaissari, A. (2019). Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property. Polymers, 11, 1017. https://doi.org/10.3390/polym11061017
- Gandhi, M., & Chikindas, M. L. (2007). Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113, 1–15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
- Granata, G., Stracquadanio, S., Leonardi, M., Napoli, E., Consoli, G. M. L., Cafiso, V., … Geraci, C. (2018). Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chemistry, 269, 286–292. https://doi.org/10.1016/j.foodchem.2018.06.140
- Khorshidian, N., Yousefi, M., Khanniri, E., & Mortazavian, A. M. (2018). Potential application of essential oils as antimicrobial preservatives in cheese. Innovative Food Science and Emerging Technologies, 45, 62–72. https://doi.org/10.1016/j.ifset.2017.09.020
- Kim, Y., Joachin, E., Choi, H., & Kim, K. (2015). Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine, 11, 1407–1416. https://doi.org/10.1016/j.nano.2015.03.004
- Kolev, I. N., Ivanova, N., Marinov, M. K., Alexieva, G. E., & Strashilov, V. L. (2019). A QCM-based assay of drug content in Eudragit RS 100-based delivery systems. Talanta, 202, 531–539. https://doi.org/10.1016/j.talanta.2019.05.033
- Le, P. N. T., & Desbois, A. P. (2017). Antibacterial effect of eicosapentaenoic acid against Bacillus cereus and Staphylococcus aureus: Killing kinetics, selection for resistance, and potential cellular target. Marine Drugs, 15, 334. https://doi.org/10.3390/md15110334
- Li, X. M., Wu, Z. Z., Zhang, B., Pan, Y., Meng, R., & Chen, H. Q. (2019). Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry, 293, 197–203. https://doi.org/10.1016/j.foodchem.2019.04.096
- Lopes, N. A., Pinilla, C. M. B., & Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1–9. https://doi.org/10.1016/j.foodhyd.2019.02.009
- Melini, F., Melini, V., Luziatelli, F., & Ruzzi, M. (2017). Raw and heat-treated milk: From public health risks to nutritional quality. Beverages, 3, 54. https://doi.org/10.3390/beverages3040054
- Mpofu, A., Linnemann, A. R., Nout, M. J. R., Zwietering, M. H., Smid, E. J., & den Besten, H. M. W. (2016). Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba. International Journal of Food Microbiology, 217, 42–48. https://doi.org/10.1016/j.ijfoodmicro.2015.09.016
- Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6, 1451–1474. https://doi.org/10.3390/ph6121451
- Patra, C. N., Priya, R., Swain, S., Kumar Jena, G., Panigrahi, K. C., & Ghose, D. (2017). Pharmaceutical significance of Eudragit: A review. Futurure Journal of Pharmaceutical Sciences, 3, 33–45. https://doi.org/10.1016/j.fjps.2017.02.001
- Pereira, K., Quintela, E., da Silva, D., do Nascimento, V., da Rocha, D., Silva, J., … Cazal, C. (2018). Characterization of nanospheres containing Zanthoxylum riedelianum fruit essential oil and their insecticidal and deterrent activities against Bemisia tabaci (Hemiptera: Aleyrodidae). Molecules, 23, 2052. https://doi.org/10.3390/molecules23082052
- Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science and Emerging Technologies, 36, 287–293. https://doi.org/10.1016/j.ifset.2016.07.017
- Pinto Reis, C., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology. Biology and Medicine, 2, 8–21. https://doi.org/10.1016/j.nano.2005.12.003
- Prakash, B., Kujur, A., Yadav, A., Kumar, A., Singh, P. P., & Dubey, N. K. (2018). Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 89, 1–11. https://doi.org/10.1016/j.foodcont.2018.01.018
- Ray, S., Raychaudhuri, U., & Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13, 76–83. https://doi.org/10.1016/j.fbio.2015.12.009
- Sadiq, F. A., Flint, S., & He, G. Q. (2018). Microbiota of milk powders and the heat resistance and spoilage potential of aerobic spore-forming bacteria. International Dairy Journal, 85, 159–168. https://doi.org/10.1016/j.idairyj.2018.06.003
- Salazar, G. J. T., de Sousa, J. P., Lima, C. N. F., Lemos, I. C. S., da Silva, A. R. P., de Freitas, T. S., … Deschamps, C. (2018). Phytochemical characterization of the Baccharis dracunculifolia DC (Asteraceae) essential oil and antibacterial activity evaluation. Industrial Crops and Products, 122, 591–595. https://doi.org/10.1016/j.indcrop.2018.06.052
- Santos, S. S., Lorenzoni, A., Pegoraro, N. S., Denardi, L. B., Alves, S. H., Schaffazick, S. R., & Cruz, L. (2014). Formulation and in vitro evaluation of coconut oil-core cationic nanocapsules intended for vaginal delivery of clotrimazole. Colloids and Surfaces B: Biointerfaces, 116, 270–276. https://doi.org/10.1016/j.colsurfb.2014.01.011
- Sobrinho, A. C. N., Souza, E. B., Rocha, M. F. G., Albuquerque, M. R. J. R., Bandera, P. N., Santos, H. S., … Cavalcante, C. S. P. (2016). Cytotoxicity, antifungal and antioxidant activities of the essential oil from Eupatorium ballotifolium Kunth (Asteraceae). African Journal of Pharmacy and Pharmacology, 10, 346–355. https://doi.org/10.5897/AJPP2016.4537
- Vaucher, R. A., Motta, A. S., & Brandelli, A. (2010). Evaluation of the in vitro cytotoxicity of the antimicrobial peptide P34. Cell Biology International, 34, 317–323. https://doi.org/10.1042/CBI20090025
- Xiao, W., & Gao, H. (2018). The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. International Journal of Pharmaceutics, 552, 328–339. https://doi.org/10.1016/j.ijpharm.2018.10.011
- Zhu, Q., Gooneratne, R., & Hussain, M. (2017). Listeria monocytogenes in fresh produce: Outbreaks, prevalence and contamination levels. Foods, 6, 21. https://doi.org/10.3390/foods6030021