Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall
Bülent Başyiğit
Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa, Turkey
Search for more papers by this authorHidayet Sağlam
Engineering-Architecture Faculty, Food Engineering Department, Kilis 7 Aralık University, Kilis, Turkey
Search for more papers by this authorKübra Köroğlu
Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa, Turkey
Search for more papers by this authorCorresponding Author
Mehmet Karaaslan
Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa, Turkey
Correspondence
Mehmet Karaaslan, Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa 63300, Turkey.
Email: [email protected]
Search for more papers by this authorBülent Başyiğit
Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa, Turkey
Search for more papers by this authorHidayet Sağlam
Engineering-Architecture Faculty, Food Engineering Department, Kilis 7 Aralık University, Kilis, Turkey
Search for more papers by this authorKübra Köroğlu
Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa, Turkey
Search for more papers by this authorCorresponding Author
Mehmet Karaaslan
Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa, Turkey
Correspondence
Mehmet Karaaslan, Engineering Faculty, Food Engineering Department, Harran University, Şanlıurfa 63300, Turkey.
Email: [email protected]
Search for more papers by this authorAbstract
This study was aimed to investigate chemical composition, biological activity, and food protecting ability of Quercus infectoria gall (QIG).The total content of phenolics, flavonoids, and hydrolyzable tannins was evaluated. Ion and fatty acid compositions of QIG were identified by ion chromatography and gas chromatography flow ionization detector (GC-FID), respectively. Ellagic acid (28,156.85 mg/kg) and catechin (716.21 mg/kg) were predominant. The antioxidant activity of QIG was determined as 2.29, 1.65, 1.52, and 1.98 mmol Trolox equivalent antioxidant capacity (TEAC)/g sample for DPPH, ABTS, FRAP, and CUPRAC analyses, respectively. QIG extract exhibited dose-dependent inhibition on α-glucosidase enzyme with an IC50 value of 0.002 mg/ml. QIG displayed antimicrobial activity against selected reference and isolated mixed strains, most notably on Escherichia coli. The addition of QIG extract as a natural preservative to pasteurized cow’s milk resulted in lower total bacterial count (TBC), total yeast-mold count (TYMC), and higher pH compared to control milk.
Practical applications
Quercus infectoria gall does not have a common use in the food and pharmaceutical industry. Exploration of the the biological value of Q. infectoria gall or its extracts could pave the way for the development of added value natural food preservatives and functional compounds. The chemical composition of Q. infectoria gall should be characterized and its biological functionality should be demonstrated beforehand. The results indicated that this plant could be considered as natural antidiabetic, antioxidant, and protective agents instead of synthetic materials and ingredients for food, cosmetic, and pharmaceutical applications.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
REFERENCES
- Abdalah, M. E., Aziz, G. M., & Adʼhiah, A. H. (2016). Hematologic effects of Quercus infectoria gall methanolic extract in albino male mice. International Journal of Pharma Sciences, 6(4), 1654–1657.
- Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chemistry, 103(4), 1141–1152. https://doi.org/10.1016/j.foodchem.2006.10.026
- Abuelsaad, A. S. A., Mohamed, I., Allam, G., & Al-Solumani, A. A. (2013). Antimicrobial and immunomodulating activities of hesperidin and ellagic acid against diarrheic Aeromonas hydrophila in a murine model. Life Sciences, 93(20), 714–722. https://doi.org/10.1016/j.lfs.2013.09.019
- Aburto, N. J., Hanson, S., Gutierrez, H., Hooper, L., Elliott, P., & Cappuccio, F. P. (2013). Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ, 346, f1378. https://doi.org/10.1136/bmj.f1378
- Alves, M. J., Ferreira, I. C. F. R., Froufe, H. J. C., Abreu, R. M. V., Martins, A., & Pintado, M. (2013). Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology, 115(2), 346–357. https://doi.org/10.1111/jam.12196
- AOAC International. (1984). Official methods of analysis (Vol. 67, 14th ed., pp. 503–515). Arlington, VA: Association of Official Analytical Chemists.
- Aouinti, F., Imelouane, B., Tahri, M., Wathelet, J. P., Amhamdi, H., & Elbachiri, A. (2014). New study of the essential oil, mineral composition and antibacterial activity of Pistacia lentiscus L. from Eastern Morocco. Research on Chemical Intermediates, 40(8), 2873–2886.
- Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2007). Mechanism of antioxidant capacity assays and theCUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413–419. https://doi.org/10.1007/s00604-007-0777-0
- Ardestani, M. M., Aliahmadi, A., Toliat, T., Dalimi, A., Momeni, Z., & Rahimi, R. (2019). Antimicrobial activity of Quercus infectoria gall and its active constituent, gallic acid, against vaginal pathogens. Traditional and Integrative Medicine, 4(1), 12–21. https://doi.org/10.18502/tim.v4i1.1664
- Arun, K. B., Jayamurthy, P., Anusha, C. V., Mahesh, S. K., & Nisha, P. (2017). Studies on activity guided fractionation of pomegranate peel extracts and its effect on antidiabetic and cardiovascular protection properties. Journal of Food Processing and Preservation, 41(1), e13108. https://doi.org/10.1111/jfpp.13108
- Ayerza, R., & Coates, W. (2011). Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Industrial Crops and Products, 34(2), 1366–1371. https://doi.org/10.1016/j.indcrop.2010.12.007
- Baker, E. J., Miles, E. A., Burdge, G. C., Yaqoob, P., & Calder, P. C. (2016). Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Progress in Lipid Research, 64, 30–56. https://doi.org/10.1016/j.plipres.2016.07.002
- Benkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT ‒ Food Science and Technology, 37(2), 263–268. https://doi.org/10.1016/j.lwt.2003.09.001
- Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
- Buckley, J. D., & Howe, P. R. C. (2009). Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids. Obesity Reviews, 10(6), 648–659. https://doi.org/10.1111/j.1467-789x.2009.00584
- Calder, P. C. (2006). Polyunsaturated fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 75(3), 197–202. https://doi.org/10.1016/j.plefa.2006.05.012
- Caleja, C., Barros, L., Antonio, A. L., Ciric, A., Soković, M., Oliveira, M. B. P. P., … Ferreira, I. C. F. R. (2015). Foeniculum vulgare Mill. as natural conservation enhancer and health promoter by incorporation in cottage cheese. Journal of Functional Foods, 12, 428–438. https://doi.org/10.1016/j.jff.2014.12.016
- Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(3), 721–726. https://doi.org/10.1016/j.foodchem.2008.06.009
- Çam, M., & İçyer, N. C. (2013). Phenolics of pomegranate peels: Extraction optimization by central composite design and alpha glucosidase inhibition potentials. Journal of Food Science and Technology, 52(3), 1489–1497. https://doi.org/10.1007/s13197-013-1148-y
- Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4°C. Food Microbiology, 24(6), 607–617. https://doi.org/10.1016/j.fm.2006.12.005
- Da Silveira, S. M., Luciano, F. B., Fronza, N., Cunha, A., Scheuermann, G. N., & Vieira, C. R. W. (2014). Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C. LWT ‒ Food Science and Technology, 59(1), 86–93. https://doi.org/10.1016/j.lwt.2014.05.032
- De, R., Sarkar, A., Ghosh, P., Ganguly, M., Karmakar, B. C., Saha, D. R., … Mukhopadhyay, A. K. (2018). Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice. Journal of Antimicrobial Chemotherapy, 73(6), 1595–1603. https://doi.org/10.1093/jac/dky079
- Desbois, A., & Lawlor, K. (2013). Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Marine Drugs, 11(11), 4544–4557. https://doi.org/10.3390/md11114544
- Dimkić, I., Ristivojević, P., Janakiev, T., Berić, T., Trifković, J., Milojković-Opsenica, D., & Stanković, S. (2016). Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. Industrial Crops and Products, 94, 856–871. https://doi.org/10.1016/j.indcrop.2016.09.065
- Egan, J. M., Kaur, A., Raja, H. A., Kellogg, J. J., Oberlies, N. H., & Cech, N. B. (2016). Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis). Phytochemistry Letters, 17, 219–225. https://doi.org/10.1016/j.phytol.2016.07.031
- Elless, M. P., Blaylock, M. J., Huang, J. W., & Gussman, C. D. (2000). Plants as a natural source of concentrated mineral nutritional supplements. Food Chemistry, 71(2), 181–188. https://doi.org/10.1016/s0308-8146(00)00142-4
- Engels, C., Schieber, A., & Gänzle, M. G. (2012). Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity. European Food Research and Technology, 234(3), 535–542. https://doi.org/10.1007/s00217-012-1669-z
- Fernandes, R. P. P., Trindade, M. A., Tonin, F. G., Lima, C. G., Pugine, S. M. P., Munekata, P. E. S., … de Melo, M. P. (2015). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451–460. https://doi.org/10.1007/s13197-015-1994-x
- Fischer, U. A., Carle, R., & Kammerer, D. R. (2011). Identification and quantification of phenolic compounds from pomegranate (Punicagranatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chemistry, 127(2), 807–821. https://doi.org/10.1016/j.foodchem.2010.12.156
- Flores, G., & Ruiz del Castillo, M. L. (2015). Variations in ellagic acid, quercetin and myricetin in berry cultivars after preharvest methyl jasmonate treatments. Journal of Food Composition and Analysis, 39, 55–61. https://doi.org/10.1016/j.jfca.2014.11.007
- Gallen, I. W., Rosa, R. M., Esparaz, D. Y., Young, J. B., Robertson, G. L., Batlle, D., … Landsberg, L. (1998). On the mechanism of the effects of potassium restriction on blood pressure and renal sodium retention. American Journal of Kidney Diseases, 31(1), 19–27. https://doi.org/10.1053/ajkd.1998.v31.pm9428447
- Gonçalves, N. D., Pena, F. D. L., Sartoratto, A., Derlamelina, C., Duarte, M. C. T., Antunes, A. E. C., & Prata, A. S. (2017). Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Research International, 96, 154–160. https://doi.org/10.1016/j.foodres.2017.03.006
- Hardisson, A., Rubio, C., Baez, A., Martin, M., Alvarez, R., & Diaz, E. (2001). Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chemistry, 73(2), 153–161. https://doi.org/10.1016/s0308-8146(00)00252-1
- Hasanvand, H., Moshtaghi, H., Heshmati, A., Boniadian, M., & Abbasvali, M. (2016). Inhibitory effect of Echinophora platyloba essential oil on Aspergillus flavus in culture media and cheese. Journal of Food Quality & Hazards Control, 3(4), 122–127.
- Heshmati, A., Azizi, M., & Ghadimi, S. (2016). Influence of ethanol and methanol extracts of walnut leaf and green hull on Saccharomyces cerevisiae, Bacillus licheniformis and Aspergillus niger in date syrup. Iranian Journal of Nutrition Sciences & Food Technology, 11(4), 81–88.
- Hou, S.-Z., Chen, S.-X., Huang, S., Jiang, D.-X., Zhou, C.-J., Chen, C.-Q., … Lai, X.-P. (2011). The hypoglycemic activity of Lithocarpus polystachyus Rehd. leaves in the experimental hyperglycemic rats. Journal of Ethnopharmacology, 138(1), 142–149. https://doi.org/10.1016/j.jep.2011.08.067
- Kabuki, T. (2000). Characterization of novel antimicrobial compounds from mango (Mangifera indica L.) kernel seeds. Food Chemistry, 71(1), 61–66. https://doi.org/10.1016/s0308-8146(00)00126-6
- Kanatt, S. R., Chander, R., & Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science & Technology, 45(2), 216–222. https://doi.org/10.1111/j.1365-2621.2009.02124
- Kibar, B., & Temel, S. (2015). Evaluation of mineral composition of some wild edible plants growing in the eastern anatolia region grasslands of Turkey and consumed as vegetable. Journal of Food Processing and Preservation, 40(1), 56–66. https://doi.org/10.1111/jfpp.12583
- Kilic, I., Yeşiloğlu, Y., & Bayrak, Y. (2014). Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 447–452. https://doi.org/10.1016/j.saa.2014.04.052
- Kubota, S., Tanaka, Y., & Nagaoka, S. (2019). Ellagic acid affects mRNA expression levels of genes that regulate cholesterol metabolism in HepG2 cells. Bioscience, Biotechnology, and Biochemistry, 83(5), 952–959. https://doi.org/10.1080/09168451.2019.1576498
- Kumari, A., Parida, A. K., Rangani, J., & Panda, A. (2017). Antioxidant activities, metabolic profiling, proximate analysis, mineral nutrient composition of Salvadora persica fruit unravel a potential functional food and a natural source of pharmaceuticals. Frontiers in Pharmacology 8(61), 1–14. https://doi.org/10.3389/fphar.2017.00061
- Lima, V. N., Oliveira-Tintino, C. D. M., Santos, E. S., Morais, L. P., Tintino, S. R., Freitas, T. S., … Coutinho, H. D. M. (2016). Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial Pathogenesis, 99, 56–61. https://doi.org/10.1016/j.micpath.2016.08.004
- Liu, H., Zeng, Z., Wang, S., Li, T., Mastriani, E., Li, Q.-H., … Liu, S.-L. (2017). Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biology & Therapy, 18(12), 990–999. https://doi.org/10.1080/15384047.2017.1394542
- Lutterodt, H., Slavin, M., Whent, M., Turner, E., & Yu, L.(2011). Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chemistry, 128(2), 391–399. https://doi.org/10.1016/j.foodchem.2011.03.040
- Ma, J., Ye, H., Rui, Y., Chen, G., & Zhang, N. (2010). Fatty acidcomposition of Camellia oleifera oil. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 6(1), 9–12. https://doi.org/10.1007/s00003-010-0581-3
10.1007/s00003-010-0581-3 Google Scholar
- Maaroufi, S. H., Rezaei, K., Raftaniamiri, Z., & Mirzaei, F. (2015). Evaluating the effects of herbal essences from spearmint and wild thyme on the quality of camel’s milk. International Journal of Food Science & Technology, 50(10), 2168–2174. https://doi.org/10.1111/ijfs.12855
- Marks, F., & Frstenberger, G. (1999). Eicosanoids and cancer. Prostaglandins, laukotrienes and other eicosanoids. Prostaglandins, Laukotrienes and Other Eicosanoids: From Biogenesis to Clinical Application, 303–330). Weinheim, Germany: Wiley-VCH. https://doi.org/10.1002/9783527613625
10.1002/9783527613625.ch11 Google Scholar
- Maruszewska, A., & Tarasiuk, J. (2019). Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells. Phytotherapy Research, 33(4), 1208–1221. https://doi.org/10.1002/ptr.6317
- McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A., & Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry, 53(7), 2760–2766. https://doi.org/10.1021/jf0489926
- Merendino, N., Costantini, L., Manzi, L., Molinari, R., D’Eliseo, D., & Velotti, F. (2013). Dietaryω-3 polyunsaturated fatty acid DHA: A potential adjuvant in the treatment of cancer. BioMed Research International, 2013, 1–11, https://doi.org/10.1155/2013/310186
- Milivojević, J., Maksimović, V., Nikolić, M., Bogdanović, J., Maletić, R., & Milatović, D. (2011). Chemical and antioxidant properties of cultivated and wild fragaria and rubus berries. Journal of Food Quality, 34(1), 1–9. https://doi.org/10.1111/j.1745-4557.2010.00360
- New, S. A., Robins, S. P., Campbell, M. K., Martin, J. C., Garton, M. J., Bolton-Smith, C., … Reid, D. M. (2000). Dietary influences on bone mass and bone metabolism: Further evidence of a positive link between fruit and vegetable consumption and bone health? The American Journal of Clinical Nutrition, 71(1), 142–151. https://doi.org/10.1093/ajcn/71.1.142
- Niki, E. (2010). Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology and Medicine, 49(4), 503–515. https://doi.org/10.1016/j.freeradbiomed.2010.04.016
- Nowicka, P., Wojdyło, A., & Samoticha, J. (2016). Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. Journal of Functional Foods, 25, 397–407. https://doi.org/10.1016/j.jff.2016.06.024
- Oladejo, A. A., Apalowo, O. A., Mustapha, S., Aliyu, A. S., Ilesanmi, O. T., & Fatoyinbo, A. A. (2019). Comparative study of mineral composition of some selected nigerian green leafy vegetables from two different regions. Asian Journal of Advances in Agricultural Research, 11(3), 1–5. https://doi.org/10.9734/ajaar/2019/v11i330057
10.9734/ajaar/2019/v11i330057 Google Scholar
- Piper, J. D., & Piper, P. W. (2017). Benzoate and Sorbate salts: A systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate. Comprehensive Reviews in Food Science and Food Safety, 16(5), 868–880. https://doi.org/10.1111/1541-4337.12284
- Podsędek, A., Majewska, I., Redzynia, M., Sosnowska, D., & Koziołkiewicz, M. (2014). In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. Journal of Agricultural and Food Chemistry, 62(20), 4610–4617. https://doi.org/10.1021/jf5008264
- Puupponen-Pimia, R., Nohynek, L., Meier, C., Kahkonen, M., Heinonen, M., Hopia, A., & Oksman-Caldentey, K.-M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90(4), 494–507. https://doi.org/10.1046/j.1365-2672.2001.01271
- Rajan, V. K., & Muraleedharan, K. (2017). A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, gallic acid. Food Chemistry, 220, 93–99. https://doi.org/10.1016/j.foodchem.2016.09.178
- Ribeiro, B., Valentão, P., Baptista, P., Seabra, R. M., & Andrade, P. B. (2007). Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology, 45(10), 1805–1813. https://doi.org/10.1016/j.fct.2007.03.015
- Ruxton, C. H. S., Calder, P. C., Reed, S. C., & Simpson, M. J. A. (2005). The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutrition Research Reviews, 18(1), 113–129. https://doi.org/10.1079/nrr200497
- Sawangjaroen, N., Sawangjaroen, K., & Poonpanang, P. (2004). Effects of Piper longum fruit, Piper sarmentosum root and Quercus infectoria nut gall oncaecal amoebiasis in mice. Journal of Ethnopharmacology, 91(2–3), 357–360. https://doi.org/10.1016/j.jep.2004.01.014
- Scotter, M. J., & Castle, L. (2004). Chemical interactions between additives in foodstuffs: A review. Food Additives & Contaminants, 21(2), 93–124. https://doi.org/10.1080/02652030310001636912
- Serra, J. L., Rodrigues, A. M. D. C., de Freitas, R. A., Meirelles, A. J. D. A., Darnet, S. H., & Silva, L. H. M. D. (2019). Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Research International, 116, 12–19. https://doi.org/10.1016/j.foodres.2018.12.028
- Shrestha, S., Kaushik, V. S., Eshwarappa, R. S. B., Subaramaihha, S. R., Ramanna, L. M., & Lakkappa, D. B. (2014). Pharmacognostic studies of insect gall of Quercus infectoria olivier (Fagaceae). Asian Pacific Journal of Tropical Biomedicine, 4(1), 35–39. https://doi.org/10.1016/s2221-1691(14)60205-7
- Silva, V., Igrejas, G., Falco, V., Santos, T. P., Torres, C., Oliveira, A. M. P., … Poeta, P. (2018). Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control, 92, 516–522. https://doi.org/10.1016/j.foodcont.2018.05.031
- Singh, A., Bajpai, V., Kumar, S., Kumar, B., Srivastava, M., & Rameshkumar, K. B. (2016). Comparative profiling of phenolic compounds from different plant parts of six Terminalia species by liquid chromatography–tandem mass spectrometry with chemometric analysis. Industrial Crops and Products, 87, 236–246. https://doi.org/10.1016/j.indcrop.2016.04.048
- Singleton, V., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
- Vaquero, M. R., Alberto, M. R., & de Nadra, M. M. (2007). Antibacterial effect of phenolic compounds from different wines. Food Control, 18(2), 93–101. https://doi.org/10.1016/j.foodcont.2005.08.010
- Vega-López, S., Ausman, L. M., Jalbert, S. M., Erkkilä, A. T., & Lichtenstein, A. H. (2006). Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. The American Journal of Clinical Nutrition, 84(1), 54–62. https://doi.org/10.1093/ajcn/84.1.54
- Vermani, A., Navneet, & Prabhat. (2009). Screening ofQuercus infectoriagall extracts as anti-bacterial agents against dental pathogens. Indian Journal of Dental Research, 20(3), 337. https://doi.org/10.4103/0970-9290.57380
- Wei, Z., Luo, J., Huang, Y. U., Guo, W., Zhang, Y., Guan, H., … Lu, J. (2017). Profile of polyphenol compounds of five muscadine grapes cultivated in the United States and in newly adapted locations in China. International Journal of Molecular Sciences, 18(3), 631. https://doi.org/10.3390/ijms18030631
- Willis, R. B. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. The Analyst, 123(3), 435–439. https://doi.org/10.1039/a706862j
- Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., … Sporns, P. (2004). Handbook of Food Analytical Chemistry, Hoboken, NJ: John Wiley & Sons, Inc. https://doi.org/10.1002/0471709085
10.1002/0471709085 Google Scholar
- Xu, W., & Wu, C. (2016). The impact of pulsed light on decontamination, quality, and bacterial attachment of fresh raspberries. Food Microbiology, 57, 135–143. https://doi.org/10.1016/j.fm.2016.02.009
- Yildirim, F., Şan, B., Yildirim, A. N., Polat, M., & Ercişli, S. (2015). Mineral composition of leaves and fruit in some myrtle (Myrtus communis L.) genotypes. Erwerbs-Obstbau, 57(3), 149–152. https://doi.org/10.1007/s10341-015-0243-9
- Zheng, C. J., Yoo, J.-S., Lee, T.-G., Cho, H.-Y., Kim, Y.-H., & Kim, W.-G. (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23), 5157–5162. https://doi.org/10.1016/j.febslet.2005.08.028
- Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/s0308-8146(98)00102-2
- Zhu, W., Qin, W., Zhang, K., Rottinghaus, G. E., Chen, Y.-C., Kliethermes, B., & Sauter, E. R. (2012). Trans-Resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutrition and Cancer, 64(3), 393–400. https://doi.org/10.1080/01635581.2012.654926