Moisture sorption isotherms, drying behavior, and quality attributes of mango sheets dried using hot air combined with relative humidity control
Kwanchanok Praphunchonakorn
Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
Contribution: Formal analysis, Funding acquisition, Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Weerachet Jittanit
Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
Correspondence
Weerachet Jittanit, Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorKwanchanok Praphunchonakorn
Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
Contribution: Formal analysis, Funding acquisition, Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Weerachet Jittanit
Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
Correspondence
Weerachet Jittanit, Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorAbstract
The equilibrium moisture contents of mango sheets were determined at 40–60°C and 11%–82% relative humidity (RH). The effects of RH and temperature of the drying air were investigated. The main objectives were: (a) to determine the moisture sorption isotherms and (b) to investigate the effects of applying hot air combined with RH control on mango sheet drying to imitate heat pump drying. Peleg's model was the best-fitting model for the equilibrium moisture content. Controlling the RH at 15% clearly raised the drying rate after drying for 2 hr compared to drying without any RH control. Single-stage drying at 60°C and 15% RH and two-stage drying both required shorter drying times and provided superior mango color and textural qualities than the single-stage drying at 60°C without any RH control. These results implicitly indicated the potential of heat pump dryer in the mango sheet drying.
Novelty impact statement
The moisture sorption isotherms together with the equations developed in this study are beneficial for the operation of heat pump dryer in mango sheet drying. The hot air combined with relative humidity control was applied in mango sheet drying experiments in order to imitate the drying air conditions occurring in a heat pump dryer. This study revealed that the application of heat pump dryer in the commercial drying of mango sheet or other agricultural products is interesting because this drying technique has potential to obtain the uniformity of moisture content of products without the necessity of opening the drying chamber to switch the positions of either trays or trolleys inside the drying chamber along the whole drying process which is both time- and labor-consuming and increases the risk of contamination.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
REFERENCES
- Achariyaviriya, S., Soponronnarit, S., & Terdyothin, A. (2000). Mathematical model development and simulation of heat pump fruit dryer. Drying Technology, 18(1–2), 479–491. https://doi.org/10.1080/07373930008917718
- AOAC. (2005). Official method of analytical of AOAC International ( 18th ed.). Method: 925.45.
- Argyropoulos, D., Khan, M. T., & Müller, J. (2011). Effect of air temperature and pre-treatment on color changes and texture of dried Boletus edulis mushroom. Drying Technology, 29(16), 1890–1900. https://doi.org/10.1080/07373937.2011.594194
- Bell, L. N., & Labuza, T. P. (2000). Practical aspects of moisture sorption isotherm measurement and use ( 2nd ed., pp. 22–26). AACC Egan Press.
- Bhandari, B. R., & Howes, T. (1999). Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering, 40(1–2), 71–79. https://doi.org/10.1016/S0260-8774(99)00039-4
- Borompichaichartkul, C., Luengsode, K., Chinprahast, N., & Devahastin, S. (2009). Improving quality of macadamia nut (Macadamia integrifolia) through the use of hybrid drying process. Journal of Food Engineering, 93(3), 348–353. https://doi.org/10.1016/j.jfoodeng.2009.01.035
- Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. https://doi.org/10.1021/ja01269a023
- Cano-Higuita, D. M., Villa-Vélez, H. A., Telis-Romero, J., Váquiro, H. A., & Telis, V. R. N. (2015). Influence of alternative drying aids on water sorption of spray dried mango mix powders: A thermodynamic approach. Food and Bioproducts Processing, 93, 19–28. https://doi.org/10.1016/j.fbp.2013.10.005
- Chapchaimoh, K., Poomsa-ad, N., Wiset, L., & Morris, J. (2016). Thermal characteristics of heat pump dryer for ginger drying. Applied Thermal Engineering, 95, 491–498. https://doi.org/10.1016/j.applthermaleng.2015.09.025
- Charoenrein, S., & Reepholkul, K. (2013). Glass transition of sugar during production of peanut brittle. Food. [online], 43(3), 74–81. http://158.108.94.117/Public/PUB0689.pdf
- Chou, S. K., & Chua, K. J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology, 12(10), 359–369. https://doi.org/10.1016/S0924-2244(01)00102-9
- Diamante, L. M., Bai, X., & Busch, J. (2014). Fruit leathers: Method of preparation and effect of different conditions on qualities. International Journal of Food Science, 2014, 1–12. https://doi.org/10.1155/2014/139890
10.1155/2014/139890 Google Scholar
- Dincer, I., & Rosen, M. A. (2021). Chapter 7 - Exergy analyses of refrigeration and heat pump systems. In I. Dincer & M. A. Rosen (Eds.), Exergy: Energy, environment and sustainable development ( 3rd ed., pp. 125–141). Elsevier.
10.1016/B978-0-12-824372-5.00007-5 Google Scholar
- FAO (Food and Agriculture Organization of the United Nations). (2019). Major tropical fruits - Statistical compendium 2018.
- FAO (Food and Agriculture Organization). (n.d.). Fruit leather. http://www.fao.org/3/a-au113e.pdf
- Fatouh, M., Metwally, M. N., Helali, A. B., & Shedid, M. H. (2006). Herbs drying using a heat pump dryer. Energy Conversion and Management, 47(15–16), 2629–2643. https://doi.org/10.1016/j.enconman.2005.10.022
- Fennema, O. R. (1996). Water and ice. In O. R. Fennema (Ed.), Food chemistry ( 3rd ed., pp. 17–94). Marcel Dekker.
- Fongin, S., Granados, A. E. A., Harnkarnsujarit, N., Hagura, Y., & Kawai, K. (2019). Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. Journal of Food Engineering, 247, 95–103. https://doi.org/10.1016/j.jfoodeng.2018.11.027
- Gan, S. H., Ong, S. P., Chin, N. L., & Law, C. L. A. (2017). A comparative quality study and energy saving on intermittent heat pump drying of Malaysian edible bird's nest. Drying Technology, 35(1), 4–14. https://doi.org/10.1080/07373937.2016.1155053
- Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89–96. https://doi.org/10.6028/jres.081A.011
- Gujral, H. S., & Brar, S. S. (2003). Effect of hydrocolloids on the dehydration kinetics, color, and texture of mango leather. International Journal of Food Properties, 6(2), 269–279. https://doi.org/10.1081/JFP-120017846
- Halsey, G. (1948). Physical adsorption on non-uniform surfaces. Journal of Chemical Physics, 16, 931–937. https://doi.org/10.1063/1.1746689
- Hong, T. D., Ellis, R. H., Gunn, J., & Moore, D. (2002). Relative Humidity, Temperature, And The Equilibrium Moisture Content of conidia of Beauveria bassiana (Balsamo) Vuillemin: A quantitative approach. Journal of Stored Products Research, 38(1), 33–41. https://doi.org/10.1016/S0022-474X(00)00043-6
- Hou, H., Chen, Q., Bi, J., Wu, X., Jin, X., Li, X., Qiao, Y., & Lyu, Y. (2020). Understanding appearance quality improvement of jujube slices during heat pump drying via water state and glass transition. Journal of Food Engineering, 272, 109874. https://doi.org/10.1016/j.jfoodeng.2019.109874
- Janjarasskul, T., Tananuwong, K., Leuangsukrerk, M., Phupoksakul, T., & Borompichaichartkul, C. (2018). Effects of hasten drying and storage conditions on properties and microstructure of Konjac Glucomannan-whey protein isolate blend films. Food Biophysics, 13, 49–59. https://doi.org/10.1007/s11483-017-9510-7
- Jeyaprakash, S., Frank, D. C., & Driscoll, R. H. (2016). Influence of heat pump drying on tomato flavor. Drying Technology, 34(14), 1709–1718. https://doi.org/10.1080/07373937.2016.1174937
- Jirayucharoensak, R., Khuenpet, K., Jittanit, W., & Sirisansaneeyakul, S. (2019). Physical and chemical properties of powder produced from spray drying of inulin component extracted from Jerusalem artichoke tuber powder. Drying Technology, 37(10), 1215–1227. https://doi.org/10.1080/07373937.2018.1492934
- Jittanit, W., & Angkaew, K. (2020). Effect of superheated-steam drying compared to conventional parboiling on chalkiness, head rice yield and quality of chalky rice kernels. Journal of Stored Products Research, 87, 1–16. https://doi.org/10.1016/j.jspr.2020.101627
- Ju, H. Y., Law, C. L., Fang, X. M., Xiao, H. W., Liu, Y. H., & Gao, Z. J. (2016). Drying kinetics and evolution of the sample's core temperature and moisture distribution of yam slices (Dioscorea alata L.) during convective hot-air drying. Drying Technology, 34(11), 1297–1306. https://doi.org/10.1080/07373937.2015.1105814
- Judge, M. D., Okos, M. R., Baker, T. G., Potthast, K., & Hamm, R. (1981). Energy requirements and processing costs for freeze-dehydration of prerigor meat. Food Technol, 35(4), 61–67.
- Kaya, A., Fahrettin, G., & Medeni, M. (2002). Moisture sorption isotherms of grape pestil and foamed grape pestil. Nahrung, 46(2), 73–75. https://doi.org/10.1002/1521-3803(20020301)46:2<73:AID-FOOD73>3.0.CO;2-N
- Kaya, S., & Kahyaoglu, T. (2005). Thermodynamic properties and sorption equilibrium of pestil (Grape leather). Journal of Food Engineering, 71(2), 200–207. https://doi.org/10.1016/j.jfoodeng.2004.10.034
- Khalloufi, S., & Ratti, C. (2003). Quality deterioration of freeze-dried foods as explained by their glass transition temperature and internal structure. Journal of Food Science, 68(3), 892–903. https://doi.org/10.1111/j.1365-2621.2003.tb08262.x
- Kivevele, T., & Huan, Z. (2014). A review on opportunities for the development of heat pump drying systems in South Africa. South African Journal of Science, 110(5/6), 1–11. https://doi.org/10.1590/sajs.2014/20130236
- Law, C. L., & Mujumdar, A. S. (2008). Energy aspects in drying. In S. V. Jangam, C. L. Law, & A. S. Mujumdar (eds.), Guide to industrial drying (pp. 279–293). IDS.
- Marsh, A., Petters, S., Rothfuss, E., Rovelli, G., Song, C., Reid, P., & Dirk, M. (2018). Amorphous phase state diagrams and viscosity of ternary aqueous organic/organic and inorganic/organic mixtures. Physical Chemistry Chemical Physics, 20, 15086–15097. https://doi.org/10.1039/c8cp00760h
- Maskan, A., Kaya, S., & Maskan, M. (2002). Hot air and sun drying of grape leather (Pestil). Journal of Food Engineering, 54(1), 81–88. https://doi.org/10.1016/S0260-8774(01)00188-1
- Matheyambath, A. C., Subramanian, J., & Paliyath, G. (2016). Mangoes. Encyclopedia of Food and Health, 641–645. https://doi.org/10.1016/B978-0-12-384947-2.00442-6
10.1016/B978?0?12?384947?2.00442?6 Google Scholar
- Mir, M. A., & Nath, N. (1995). Sorption isotherms of fortified mango bars. Journal of Food Engineering, 25, 141–150. https://doi.org/10.1016/0260-8774(94)00005-T
- Moalemiyan, M., Ramaswamy, H. S., & Maftoonazad, N. (2012). Pectin-based edible coating for shelf-life extension of Ataulfo mango. Journal of Food Process Engineering, 35(4), 572–600. https://doi.org/10.1111/j.1745-4530.2010.00609.x
- Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and Arabic gum. Food Research International, 47(2), 201–206. https://doi.org/10.1016/j.foodres.2011.05.019
- Oswin, C. R. (1946). The kinetics of package life. III. Isotherm. Journal of the Society of Chemical Industry, 65(12), 419–421. https://doi.org/10.1002/jctb.5000651216
- Pal, U. S., Khan, M. K., & Mohanty, S. N. (2008). Heat pump drying of green sweet pepper. Drying Technology, 26(12), 1584–1590. https://doi.org/10.1080/07373930802467144
- Palipane, K. B., & Driscoll, R. H. (1992). Moisture sorption characteristics of in-shell macadamia nuts. Journal of Food Engineering, 18(1), 63–76. https://doi.org/10.1016/0260-8774(93)90075-U
- Peleg, M., & Barbosa, G. V. (1993). Fractals and foods. Critical Reviews in Food Science and Nutrition, 33(2), 149–165. https://doi.org/10.1080/10408399309527617
- Perez-Gago, M. B., Serra, M., & del Río, M. A. (2006). Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biology and Technology, 39(1), 84–92. https://doi.org/10.1016/j.postharvbio.2005.08.002
- Prasertsan, S., & Saen-saby, P. (1998). Heat pump drying of agricultural materials. Drying Technology, 16(1–2), 235–250. https://doi.org/10.1080/07373939808917401
- Raji, A. O., & Ojediran, J. O. (2011). Moisture sorption isotherms of two varieties of millet. Food and Bioproducts Processing, 89(3), 178–184. https://doi.org/10.1016/j.fbp.2010.06.001
- Roos, Y. H., & Silalai, N. (2011). Glass transitions: Opportunities and challenges. In J. M. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre, & G. Barbosa-Canovas (Eds.), Food engineering interfaces (pp. 473–490). Springer.
- Ruiz-Cabrera, M. A., & Schmidt, S. J. (2015). Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering, 146, 36–43. https://doi.org/10.1016/j.jfoodeng.2014.08.023
- Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73(3), 281–289. https://doi.org/10.1016/j.jfoodeng.2005.03.024
- Salehi, F. (2021). Recent applications of heat pump dryer for drying of fruit crops: A review. International Journal of Fruit Science, 21(1), 546–555. https://doi.org/10.1080/15538362.2021.1911746
- Sehrawat, R., Nema, P. K., & Kaur, B. P. (2018). Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT - Food Science and Technology, 92, 548–555. https://doi.org/10.1016/j.lwt.2018.03.012
- Singh, R. R. B., Rao, K. H., Anjaneyulu, A. S. R., & Patil, G. R. (2001). Moisture sorption properties of smoked chicken sausages from spent hen meat. Food Research International, 34, 143–148. https://doi.org/10.1016/S0963-9969(00)00145-9
- Sootjarit, S., Jittanit, W., Phompan, S., & Rerkdamri, P. (2011). Moisture sorption behavior and drying kinetics of pre-germinated rough rice and pre-germinated brown rice. Trans. ASABE, 54(1), 255–263. https://doi.org/10.13031/2013.36243
- Soponronnarit, S., Nathakaranakule, A., Wetchacama, S., Swasdisevi, T., & Rukprang, P. (1998). Fruit drying using heat pump. RERIC International Energy Journal, 20, 39–53.
- Suna, S., & Özkan-Karabacak, A. (2019). Investigation of drying kinetics and physicochemical properties of mulberry leather (Pestil) dried with different methods. Journal of Food Processing and Preservation, 43(8), 1–9. https://doi.org/10.1111/jfpp.14051
- Teeboonma, U., Tiansuwan, J., & Soponronnarit, S. (2003). Optimization of heat pump fruit dryers. Journal of Food Engineering, 59, 369–377. https://doi.org/10.1016/S0260-8774(02)00496-X
- Valenzuela, C., & Aguilera, J. M. (2015). Effects of different factors on stickiness of apple leathers. Journal of Food Engineering, 149, 51–60. https://doi.org/10.1016/j.jfoodeng.2014.09.029
- Van den Berg, C. (1985). Development of B.E.T. like models for sorption of water of foods; theory and relevance. In D. Simatos & J. L. Multon (Eds.), Properties of water in foods (pp. 119–131). Martinus Nijhoff Publishers.
10.1007/978-94-009-5103-7_8 Google Scholar
- Vazquez, G., Chenlo, F., Moreria, R., & Cruz, E. (1997). Grape drying in a pilot plant with a heat pump. Drying Technology, 15(3–4), 899–920. https://doi.org/10.1080/07373939708917267
- Wang, D. C., Zhang, G., Han, Y. P., Zhang, J. P., & Tian, X. L. (2011). Feasibility analysis of heat pump dryer to dry hawthorn cake. Energy Conversion and Management, 52(8–9), 2919–2924. https://doi.org/10.1016/j.enconman.2011.04.002
- Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2008). Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. Journal of Food Engineering, 86, 342–348. https://doi.org/10.1016/j.jfoodeng.2007.10.009
- Yu, Y., Ge, L., Ramaswamy, H. S., Wang, C., Zhan, Y., & Zhu, S. (2016). Effect of high-pressure processing on moisture sorption properties of brown rice. Drying Technology, 34(7), 783–792. https://doi.org/10.1080/07373937.2015.1077457