Modeling Salmonella (S. Typhimurium ATCC14028, ATCC 13311, S. Typhi ATCC 19430, and S. enterica) and Listeria (L. monocytogenes Scott A, ATCC 7644, and CDBB-B-1426) cocktails’ survival under the effects of pH, protein, and essential oil concentration
Leonor Lastra-Vargas
Chemical and Food Engineering Department, Universidad de las Américas Puebla, Puebla, Mexico
Search for more papers by this authorAurelio Lopez-Malo
Chemical and Food Engineering Department, Universidad de las Américas Puebla, Puebla, Mexico
Search for more papers by this authorCorresponding Author
Enrique Palou
Chemical and Food Engineering Department, Universidad de las Américas Puebla, Puebla, Mexico
Correspondence
Enrique Palou, Chemical and Food Engineering Department, Universidad de las Américas Puebla, San Andrés Cholula, Puebla 72810, Mexico.
Email: [email protected]
Search for more papers by this authorLeonor Lastra-Vargas
Chemical and Food Engineering Department, Universidad de las Américas Puebla, Puebla, Mexico
Search for more papers by this authorAurelio Lopez-Malo
Chemical and Food Engineering Department, Universidad de las Américas Puebla, Puebla, Mexico
Search for more papers by this authorCorresponding Author
Enrique Palou
Chemical and Food Engineering Department, Universidad de las Américas Puebla, Puebla, Mexico
Correspondence
Enrique Palou, Chemical and Food Engineering Department, Universidad de las Américas Puebla, San Andrés Cholula, Puebla 72810, Mexico.
Email: [email protected]
Search for more papers by this authorAbstract
A response surface Bok–Behnken design was utilized to determine the effect of pH (6.5, 6.0, or 5.5), soy protein isolate (SPI: 10.0%, 11.5%, or 13.0% wt/wt), and thyme or oregano essential oil (EO) concentrations (0.22%, 0.25%, or 0.28% wt/wt) on the survival of Salmonella or Listeria cocktails; pH and protein values were chosen according to what is expected for deli meats classified as commercial or economical. Significant coefficients (p < 0.05) describing studied microorganism’s response were identified through polynomial regression models. EOs (0.25% wt/wt) were able to reduce bacterial populations by 2-log cycles at SPI concentrations from 10% to 12.5% (wt/wt) and pHs from 5.5 to 6.5 while 5-log reductions were achieved in media with highest tested EO concentrations and lowest tested SPI concentration at pH 5. Bacterial growth/no-growth interfaces and growth probabilities under selected combinations of tested factors (including inoculation levels, 3 to 8 log CFU/ml) were determined by means of binary logistic regressions; at pH 6.3, 0.28% (wt/wt) of EO is able to control bacterial growth (probability of growth < 0.1) at every tested SPI level.
Practical applications
Since ready-to-eat (RTE) protein-based products like cold cuts and deli meats may be consumed without an additional cooking or heating step, they have been implicated in the risk of diseases transmitted by the consumption of these types of foods.
This work highlights the importance of modeling the survival of Salmonella or Listeria cocktails in order to predict the impact of pH, soy protein isolate, and thyme or oregano essential oil (EO) concentrations. This information can be utilized as a guideline to produce economical deli meats that are safe as well as to establish the lower limits of EO concentration for further testing in real food matrices.
Additionally, our results emphasize the importance of the use of food model media to assess by means of predictive microbiology the antimicrobial potential of EOs previous to apply them in real food systems.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
References
- Ait-Ouazzou, A., Espina, L., Gelaw, T. K., de Lamo-Castellví, S., Pagán, R., & García-Gonzalo, D. (2012). New insights in mechanisms of bacterial inactivation by carvacrol. Journal of Applied Microbiology, 114, 173–185. https://doi.org/10.1111/jam.12028.
- AOAC. (1995). Official Methods of Analysis. ( 14th ed.). Washington, DC, USA: Association of Official Analytical Chemists. Inc. Method 962.3.
- Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2015). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. https://doi.org/10.1111/1541-4337.12179.
- Boskovic, M., Baltic, M., Ivanovic, J., Djuric, J., Loncina, J., Dokmanovic, M., & Markovic, R. (2013). Use of essential oils in order to prevent foodborne illnesses caused by pathogens in meat. Tehnologija Mesa, 54(1), 14–20. https://doi.org/10.5937/tehmesa1301014b.
10.5937/tehmesa1301014B Google Scholar
- Boskovic, M., Zdravkovic, N., Ivanovic, J., Janjic, J., Djordjevic, J., Starcevic, M., & Baltic, M. Z. (2015). Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Science, 5, 18–21. https://doi.org/10.1016/j.profoo.2015.09.005.
10.1016/j.profoo.2015.09.005 Google Scholar
- Briers, Y., Klumpp, J., Schuppler, M., & Loessner, M. J. (2011). Genome sequence of Listeria monocytogenes Scott A, a clinical isolate from a food-borne listeriosis outbreak. Journal of Bacteriology, 193(16), 4284–4285. https://doi.org/10.1128/JB.05328-11.
- Carvalho, R. I., de Jesus Medeiros, A. S., Chaves, M., de Souza, E. L., & Magnani, M.(2018). Lipids, pH, and their interaction affect the inhibitory effects of carvacrol against Salmonella Typhimurium PT4 and Escherichia coli O157:H7. Frontiers in Microbiology, 8, 1–9. https://doi.org/10.3389/fmicb.2017.02701.
- Casco, G., Taylor, T. M., & Alvarado, C. Z. (2015). Evaluation of novel micronized encapsulated essential oil-containing phosphate and lactate blends for growth inhibition of Listeria monocytogenes and salmonella on poultry bologna, pork ham, and roast beef ready-to-eat deli loaves. Journal of Food Protection, 78(4), 698–706. https://doi.org/10.4315/0362-028X.JFP-14-273.
- Charles-Hernández, G. L., Medina-Solís, C. E., & Hernández-Romano, J. (2007). Prevalencia de Salmonella sp en alimentos en el estado de Tamaulipas durante el año 2005. Revista de Investigación Clínica, 59(6), 437–443. Retrieved from https://www.medigraphic.com/pdfs/revinvcli/nn-2007/nn076e.pdf.
- Chen, W., Golden, D. A., Critzer, F. J., & Davidson, P. M. (2015). Antimicrobial activity of cinnamaldehyde, carvacrol, and lauric arginate against Salmonella Tennessee in a glycerol-sucrose model and peanut paste at different fat concentrations. Journal of Food Protection, 78(8), 1488–1495. https://doi.org/10.4315/0362-028X.JFP-14-599.
- Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines, 4, 58. https://doi.org/10.3390/medicines4030058.
10.3390/medicines4030058 Google Scholar
- Contreras-Soto, M. B., Medrano-Félix, J. A., Ibarra-Rodríguez, J. R., Martínez-Urtaza, J., Chaidez, Q. C., & Castro-del Campo, N. (2019). The last 50 years of Salmonella in Mexico: Sources of isolation and factors that influence its prevalence and diversity. Revista Bio Ciencias, 6, nesp, e540. https://doi.org/10.15741/revbio.06.nesp.e540.
- de Carvalho, R. J., de Souza, G. T., Honório, V. G., de Sousa, J. P., da Conceição, M. L., Maganani, M., & de Souza, E. L. (2015). Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiology, 52, 59–65. https://doi.org/10.1016/j.fm.2015.07.003.
- El Babili, F., Bouajila, J., Souchard, J. P., Bertrand, C., Bellvert, F., Fouraste, I., Moulis, C., & Valentin, A. (2011). Oregano: Chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities. Journal of Food Science, 76(3), 512–518. https://doi.org/10.1111/j.1750-3841.2011.02109.x.
- Firouzi, R., Shekarforoush, S. S., Nazer, A. H. K., Borumand, Z., & Jooyandeh, A. R. (2007). Effects of essential oils of oregano and nutmeg on growth and survival of Yersinia enterocolitica and Listeria monocytogenes in barbecued chicken. Journal of Food Protection, 70(11), 2626–2630. https://doi.org/10.4315/0362-028X-70.11.2626.
- Fraternale, D., Flamini, G., & Ricci, D. (2016). Essential oil composition of Angelica archangelica L. (Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant Biosystems, 150(3), 558–563. https://doi.org/10.1080/11263504.2014.988190.
- Fratianni, F., De Martino, L., Melone, A., De Feo, V., Coppola, R., & Nazzaro, F. (2010). Preservation of chicken breast meat treated with thyme and balm essential oils. Journal of Food Science, 75(8), M528–M535. https://doi.org/10.1111/j.1750-3841.2010.01791.x.
- Gill, A. O., Delaquis, P., Russo, P., & Holley, R. A. (2002). Evaluation of antilisterial action of cilantro oil on vacuum packed ham. International Journal of Food Microbiology, 73(1), 83–92. https://doi.org/10.1016/S0168-1605(01)00712-7.
- Godínez-Oviedo, A., Parra, F. S., Vergara, J. J. M., González, P. G., & Iturriaga, M. H. (2019). Food consumer behavior and Salmonella exposure self-perception in the central region of Mexico. Journal of Food Science, 84(10), 2907–2915. https://doi.org/10.1111/1750-3841.14792.
- GOVREGS. (2019). U.S. Code of Federal Regulations. 424.21 – Use of food ingredients and sources of radiation. Retrieved from https://www.govregs.com/regulations/expand/title9_chapterIII_part424_subpartC_section424.21.
- Grant, A., & Parveen, S. (2017). All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging. Journal of Food Protection, 80(4), 540–544. https://doi.org/10.4315/0362-028X.JFP-16-146.
- Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, 124, 91–97. https://doi.org/10.1016/j.ijfoodmicro.2008.02.028.
- Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2009). Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiology, 26(2), 142–150. https://doi.org/10.1016/j.fm.2008.10.008.
- Gutiérrez-Cogco, L., Montiel-Vásquez, E., Aguilera-Pérez, P., & González-Andrade, M. C. (2000). Serotipos de Salmonella identificados de los servicios de salud de México. Salud Pública de México, 42, 6. Retrieved from http://saludpublica.mx/index.php/spm/article/view/6270/7497.
- Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985–990. https://doi.org/10.1046/j.1365-2672.1999.00780.x.
- Hudaib, M., Speroni, E., Di Pietra, A. M., & Cavrini, V. (2002). GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. Journal of Pharmaceutical and Biomedical Analysis, 29(4), 691–700. https://doi.org/10.1016/S0731-7085(02)00119-X.
- Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 1–24. https://doi.org/10.3389/fmicb.2012.00012.
- Jayasena, D. D., & Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends in Food Science and Technology, 34(2), 96–108. https://doi.org/10.1016/j.tifs.2013.09.002.
- Juven, B. J., Kanner, J., Schved, F., & Weisslowicz, H. (1994). Factors that interact with the antibacterial action of thyme essential oil and its active constituents. Journal of Applied Bacteriology, 76(6), 626–631. https://doi.org/10.1111/j.1365-2672.1994.tb01661.x.
- Kazemi, S. M., & Rezaei, M. (2015). Antimicrobial effectiveness of gelatin-alginate film containing oregano essential oil for fish preservation. Journal of Food Safety, 35(4), 482–490. https://doi.org/10.1111/jfs.12198.
- Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Sokeng, A. J. T., Izadi, M., Jafari, N. J., Suntar, I., Daglia, M., & Nabavi, S. M. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials, 10(8), 1–15. https://doi.org/10.3390/ma10080947.
- McDonnell, L. M., Glass, K. A., & Sindelar, J. J. (2013). Identifying ingredients that delay outgrowth of Listeria monocytogenes in natural, organic, and clean-label ready-to-eat meat and poultry products. Journal of Food Protection, 76(8), 1366–1376. https://doi.org/10.4315/0362-028X.
- Mejía-Garibay, B., Palou, E., & López-Malo, A. (2015). Composition, diffusion, and antifungal activity of black mustard (Brassica nigra) essential oil when applied by direct addition of vapor phase contact. Journal of Food Protection, 78(64), 843–848. https://doi.org/10.4315/0362-028X.
- Miyague, L., Macedo, R. E. F., Meca, G., Holley, R. A., & Luciano, F. B. (2015). Combination of phenolic acids and essential oils against Listeria monocytogenes. LWT - Food Science and Technology, 64(1), 333–336. https://doi.org/10.1016/j.lwt.2015.05.055.
- NOM-122-SSA1- 1994. Norma Oficial Mexicana. Bienes y servicios. Productos de la carne. Productos cárnicos curados y cocidos, y curados emulsionados y cocidos. Especificaciones sanitarias. Retrieved from http://www.salud.gob.mx/unidades/cdi/nom/122ssa14.html.
- NOM-145-SSA1- 1995. Norma Oficial Mexicana. Productos cárnicos troceados y curados. Productos cárnicos curados y madurados. Disposiciones y especificaciones sanitarias. Retrieved from http://www.salud.gob.mx/unidades/cdi/nom/145ssa15.html.
- NOM-158-SCFI- 2003. Norma Oficial Mexicana. Jamón-Denominación y clasificación comercial, especificaciones fisicoquímicas, microbiológicas, organolépticas, información comercial y métodos de prueba. Retrieved from https://www.porcimex.org/NORMAS/nom-158-scfi.pdf.
- Patel, S. (2015). Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: A review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 32(7), 1049–1064. https://doi.org/10.1080/19440049.2015.1040081.
- Perricone, M., Arace, E., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2015). Bioactivity of essential oils: A review on their interaction with food components. Frontiers in Microbiology, 6(FEB), 1–7. https://doi.org/10.3389/fmicb.2015.00076.
- Perumalla, A. V. S., Hettiarachchy, N. S., Over, K., Ricke, S. C., Slavik, M. F., Gbur, E., Davis, B., & Acosta, S. (2013). Effect of partial replacement of potassium lactate and sodium diacetate by natural green tea and grape seed extracts and postpackaging thermal treatment on the growth of Listeria monocytogenes in hotdog model system. International Journal of Food Science and Technology, 48(5), 918–926. https://doi.org/10.1111/ijfs.12042.
- Possas, A. M. M., Posada-Izquierdo, G. D., Pérez-Rodríguez, F., & García-Gimeno, R. M. (2016). Modeling the transfer of Salmonella Enteritidis during slicing of ready-to-eat turkey products treated with thyme essential oil. Journal of Food Science, 81(11), M2770–M2775. https://doi.org/10.1111/1750-3841.13506.
- PROFECO. (2013). El laboratorio PROFECO reporta. Jamón, la tradición puesta bajo la lupa. Revista del consumidor, January, 30–42. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/100430/RC431_Estudio_Jamon.pdf.
- PROFECO. (2016). El labratorio PROFECO reporta. Jamón, no todo es color de rosa. Revista del consumidor, 478:41-51. Retrieved from https://issuu.com/profeco/docs/edicio__n_nu__mero_478_diciembre_20.
- Quesenberry, H. H., Galllager, D., Endrikat, S., LaBarre, D., Ebel, E., Schroeder, C., & Kause, J. (2010). FSIS Comparative risk assessment for Listeria monocytogenes in ready-to-eat meat and poultry deli meats report. Retrieved from https://www.fsis.usda.gov/shared/PDF/Comparative_RA_Lm_Report_May2010.pdf.
- Reyes-Jurado, F., López-Malo, A., & Palou, E. (2016). Antimicrobial activity of individual and combined essential oils against foodborne pathogenic bacteria. Journal of Food Protection, 79(2), 309–315. https://doi.org/10.4315/0362-028X.JFP-15-392.
- Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Fernández Escámez, P. S., …Lindqvist, R. (2018). Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA Journal, 16(1). https://doi.org/10.2903/j.efsa.2018.5134.
- Ruiz-Navajas, Y., Viuda-Martos, M., Barber, X., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2015). Effect of chitosan edible films added with Thymus moroderi and Thymus piperella essential oil on shelf-life of cooked cured ham. Journal of Food Science and Technology, 52(10), 6493–6501. https://doi.org/10.1007/s13197-015-1733-3.
- Salehi, B., Mishra, A. P., Shukla, I., Sharifi-Rad, M., Contreras, M. d. M., Segura-Carretero, A., … Sharifi-Rad, J.(2018). Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 32(9), 1688–1706. https://doi.org/10.1002/ptr.6109.
- Sarengaowa, Hu, W., Feng, K., Xiu, Z., Jiang, A., & Lao, Y.(2019). Efficacy of thyme oil-alginate-based coating in reducing foodborne pathogens on fresh-cut-apples. International Journal of Food Science and Technology, 54, 3128–3137. https://doi.org/10.1111/ijfs.14229.
- Sienkiewicz, M., Łysakowska, M., Pastuszka, M., Bienias, W., & Kowalczyk, E. (2013). The potential of use basil and rosemary essential oils as effective antibacterial agents. Molecules, 18(8), 9334–9351. https://doi.org/10.3390/molecules18089334.
- Singh, A., Singh, R. K., Bhunia, A. K., & Singh, N. (2003). Efficacy of plant essential oils as antimicrobial agents against Listeria monocytogenes in hotdogs. LWT-Food Science and Technology, 36(8), 787–794. https://doi.org/10.1016/S0023-6438(03)00112-9.
- Tassou, C. C., Drosinos, E. H., & Nychas, G. J. E. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4° and 10°C. Journal of Applied Bacteriology, 78(6), 593–600. https://doi.org/10.1111/j.1365-2672.1995.tb03104.x.
- Torpol, K., Wiriyacharee, P., Sriwattana, S., Sangsuwan, J., & Prinyawiwatkul, W. (2018). Antimicrobial activity of garlic (Allium sativum L.) and holy basil (Ocimum sanctum L.) essential oils applied by liquid vs. vapor phases. International Journal of Food Science and Technology, 53, 2119–2128. https://doi.org/10.1111/ijfs.1407.
- Tserennadmid, R., Takó, M., Galgóczy, L., Papp, T., Vágvölgyi, C., Gero, L., & Krisch, J. (2010). Antibacterial effect of essential oils and interaction with food components. Central European Journal of Biology, 5(5), 641–648. https://doi.org/10.2478/s11535-010-0058-5.
- Veldhuizen, E. J. A., Creutzberg, T. O., Burt, S. A., & Haagsman, H. P. (2007). Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. Journal of Food Protection, 70(9), 2127–2132. https://doi.org/10.4315/0362-028X-70.9.2127.
- Yemiş, G. P., & Candoğan, K. (2017). Antibacterial activity of soy edible coatings incorporated with thyme and oregano essential oils on beef against pathogenic bacteria. Food Science and Biotechnology, 26(4), 1113–1121. https://doi.org/10.1007/s10068-017-0136-9.
- WHO. (2018a). Fact sheets Detail: Listeriosis. Retrieved from https://www.who.int/mediacentre/factsheets/listeriosis/en/.
- WHO. (2018b). Fact sheets Detail: Salmonella (non-typhoidal). Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/salmonella-(non-typhoidal).
- Zengin, H., & Baysal, A. H. (2015). Antioxidant and antimicrobial activities of thyme and clove essential oils and application in minced beef. Journal of Food Processing and Preservation, 39(6), 1261–1271. https://doi.org/10.1111/jfpp.12344.
- Zhang, L., Moosekian, S. R., Todd, E. C. D. D., & Ryser, E. T. (2012). Growth of Listeria monocytogenes in different retail delicatessen meats during simulated home storage. Journal of Food Protection, 75(5), 896–905. https://doi.org/10.4315/0362-028X.JFP-11-491.
- Zhao, Y., Teixeira, J. S., Saldaña, M. D. A., & Gänzle, M. G. (2019). Antimicrobial activity of bioactive starch packaging films against Listeria monocytogenes and reconstituted meat microbiota on ham. International Journal of Food Microbiology, 305, 108253. https://doi.org/10.1016/j.ijfoodmicro.2019.108253.
- Zhou, F., Ji, B., Zhang, H., Jiang, H., Yang, Z., Li, Jingjing, Li, Jihai, Ren, Y., & Yan, W. (2007). Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella Typhimurium. Journal of Food Protection, 70(7), 1704–1709. https://doi.org/10.4315/0362-028X-70.7.1704.