Microencapsulation of Lactobacillus casei Shirota by spray drying using different combinations of wall materials and application for probiotic dairy dessert
Corresponding Author
Osman Gul
Program of Food Technology, Yeşilyurt Demir–Celik Vocational School, Ondokuz Mayis University, Samsun, Turkey
Correspondence Osman Gul, Ondokuz Mayis University, Yeşilyurt Demir–Çelik Vocational School, Department of Food Processing, 55300 Samsun, Turkey.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Osman Gul
Program of Food Technology, Yeşilyurt Demir–Celik Vocational School, Ondokuz Mayis University, Samsun, Turkey
Correspondence Osman Gul, Ondokuz Mayis University, Yeşilyurt Demir–Çelik Vocational School, Department of Food Processing, 55300 Samsun, Turkey.
Email: [email protected]
Search for more papers by this authorAbstract
The effect of different combinations of maltodextrin (MD), reconstitute skim milk (RSM), and gum arabic (GA) on physical of microcapsules, cell viability under in vitro gastrointestinal conditions and storage stability of Lactobacillus casei Shirota microencapsulated by spray drying were evaluated and cells incorporated into Pudding was also studied. Microcapsules containing typical concavities of atomized powders showed to be spherical with no surface fissures or visible cracks. The addition of GA to RSM or MD was decreased the bulk density and L* values of powders, but more protected the viability after exposure to in vitro gastrointestinal juice. During storage at 4 and 24°C, RSM was found to be the best media for the protection of probiotic bacteria. Microencapsulated cell counts in pudding samples decreased at the 14th day and then increased at the end of the storage. pH value of sample containing RSM:GA capsules was found more stable.
Practical applications
Microencapsulation is described as a technique that has been used to improve probiotic survival by encapsulating in a biopolymer. However, the choice of a biopolymer for encapsulation of probiotic bacteria is very important. So that, the effect of some polymers on the encapsulation of Lactobacillus casei Shirota by spray drying was investigated.
REFERENCES
- Adhikari, K., Mustapha, A., Grün, I. U., & Fernando, L. (2000). Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. Journal of Dairy Science, 83, 1946–1951.
- Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 41, 184–193.
- Aragon-Alegro, L. C., Alegro, J. H. A., Cardarelli, H. R., Chiu, M. C., & Saad, S. M. I. (2007). Potentially probiotic and synbiotic chocolate mousse. LWT—Food Science and Technology, 40, 669–675.
- Aryana, K. J., & Mcgrew, P. (2007). Quality attributes of yogurt with Lactobacillus casei and various prebiotics. LWT—Food Science and Technology, 40, 1808–1814.
- Bae, E. K., & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25, 549–560.
- Bustos, P., & Bórquez, R. (2013). Influence of osmotic stress and encapsulating materials on the stability of autochthonous Lactobacillus plantarum after spray drying. Drying Technology, 31, 57–66.
- Boza, Y., Barbin, D., & Scamparini, A. R. P. (2004). Survival of Beijerinckia sp. microencapsulated in carbohydrates by spray-drying. Journal of Microencapsulation, 21, 15–24.
- Cano-Higuita, D. M., Malacrida, C. R., & Telis, V. R. N. (2015). Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum arabic and modified starch. Journal of Food Processing and Preservation, 39, 2049–2060.
- Carneiro, H. C., Tonon, R. V., Grosso, C. R., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115, 443–451.
- de Castro-Cislaghi, F. P., Silva, C. D. R. E., Fritzen-Freire, C. B., Lorenz, J. G., & Sant'anna, E. S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113, 186–193.
- Desmond, C., Ross, R. P., O'callaghan, E., Fitzgerald, G., & Stanton, C. (2002). Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology, 93, 1003–1011.
- FAO/WHO. (2000). Guidelines for the evaluation of probiotics in food. London, Ontario, Canada. Retrieved from ftp://ftp.fao.org/es/esn/food/wgreport2.pdf
- Favaro-Trindade, C. S., Santana, A. S., Monterrey-Quintero, E. S., Trindade, M. A., & Netto, F. M. (2010). The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids, 24, 336–340.
- Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1), 306–312.
- Fritzen-Freire, C. B., Prudêncio, E. S., Pinto, S. S., Muñoz, I. B., Müller, C. M. O., Vieira, C. R. W., & Amboni, R. D. M. C. (2013). Effect of the application of Bifidobacterium BB-12 microencapsulated by spray drying with prebiotics on the properties of ricotta cream. Food Research International, 52, 50–55.
- Gardiner, G. E., O'sullivan, E., Kelly, J., Auty, M. A., Fitzgerald, G. F., Collins, J. F., … Stanton, C. (2000). Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Applied and Environmental Microbiology, 66, 2605–2612.
- Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40, 1107–1121.
- Golowczyc, M. A., Silva, J., Abraham, A. G., de Antoni, G. L., & Teixeira, P. (2010). Preservation of probiotic strains isolated from kefir by spray drying. Letters in Applied Microbiology, 50, 7–12.
- Gurmeric, V. E., Dogan, M., Toker, O. S., Senyigit, E., & Ersoz, N. B. (2013). Application of different multi-criteria decision techniques to determine optimum flavour of prebiotic pudding based on sensory analyses. Food and Bioprocess Technology, 6, 2844–2859.
- Hamilton-Miller, J. M. T., Shah, S., & Winkler, J. T. (1999). Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutrition, 2, 223–229.
- Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111, 50–55.
- Ilha, E. C., da Silva, T., Lorenz, J. G., de Oliveira Rocha, G., & Sant Anna, E. S. (2015). Lactobacillus paracasei isolated from grape sourdough: Acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. European Food Research and Technology, 240, 977–984.
- Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: Technology and potential applications. Current Issues in Intestinal Microbiology, 3, 39–48.
- Khater, K. A. A., Ali, M. A., & Ahmed, E. A. M. (2010). Effect of encapsulation on some probiotic criteria. Journal of American Science, 6, 810–819.
- Kiokias, S., Dimakou, C., & Oreopoulou, V. (2007). Effect of heat treatment and droplet size on the oxidative stability of whey protein emulsions. Food Chemistry, 105, 94–100.
- Lian, W. C., Hsiao, H. C., & Chou, C. C. (2002). Survival of Bifidobacteria after spray-drying. International Journal of Food Microbiology, 74, 79–86.
- Lian, W. C., Hsiao, H. C., & Chou, C. C. (2003). Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. International Journal of Food Microbiology, 86, 293–301.
- Liserre, A. M., Ines Re, M., & Franco, B. D. G. M. (2007). Microencapsulation of Bifidobacterium animalis subsp. lactis in modified alginate-chitosan beads and evaluation of survival in simulated gastrointestinal conditions. Food Biotechnology, 21, 1–16.
-
Manojlović, V.,
Nedović, V. A.,
Kailasapathy, K., &
Zuidam, N. J. (2010). Encapsulation of probiotics for use in food products. In N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation technologies for active food ingredients and food processing (pp. 269–302). New York: Springer.
10.1007/978-1-4419-1008-0_10 Google Scholar
- Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C., & Ross, R. P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106, 1406–1416.
- Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; A review. Journal of Microbiological Methods, 66, 183–193.
- Munoz-Celaya, A. L., Ortiz-García, M., Vernon-Carter, E. J., Jauregui-Rincón, J., Galindo, E., & Serrano-Carreón, L. (2012). Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydrate Polymers, 88, 1141–1148.
- Nozière, P., Grolier, P., Durand, D., Ferlay, A., Pradel, P., & Martin, B. (2006). Variations in carotenoids, fat-soluble micronutrients, and color in cows' plasma and milk following changes in forage and feeding level. Journal of Dairy Science, 89, 2634–2648.
- Nualkaekul, S., Lenton, D., Cook, M. T., Khutoryanskiy, V. V., & Charalampopoulos, D. (2012). Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydrate Polymers, 90, 1281–1287.
- O'riordan, K., Andrews, D., Buckle, K., & Conway, P. (2001). Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. Journal of Applied Microbiology, 91, 1059–1066.
- Paéz, R., Lavari, L., Vinderola, G., Audero, G., Cuatrin, A., Zaritzky, N., & Reinheimer, J. (2012). Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Research International, 48, 748–754.
- Páez, R., Lavari, L., Audero, G., Cuatrin, A., Zaritzky, N., Reinheimer, J., & Vinderola, G. (2013). Study of the effects of spray-drying on the functionality of probiotic lactobacilli. International Journal of Dairy Technology, 66, 155–161.
- Pérez-Alonso, C., Báez-González, J. G., Beristain, C. I., Vernon-Carter, E. J., & Vizcarra-Mendoza, M. G. (2003). Estimation of the activation energy of carbohydrate polymers blends as selection criteria for their use as wall material for spray-dried microcapsules. Carbohydrate Polymers, 53, 197–203.
- Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT—Food Science and Technology, 60, 773–780.
- Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Ruminant Research, 123, 155–159.
- Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. International Journal of Dairy Technology, 62, 240–248.
- Saénz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114, 616–622.
- Salar-Behzadi, S., Wu, S., Toegel, S., Hofrichter, M., Altenburger, I., Unger, F. M., … Viernstein, H. (2013). Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Research International, 54, 93–101.
- Semyonov, D., Ramon, O., & Shimoni, E. (2011). Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT—Food Science and Technology, 44, 1844–1852.
- Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43, 193–202.
- Shiga, H., Yoshii, H., Nishiyama, T., Furuta, T., Forssele, P., Poutanen, K., & Linko, P. (2001). Flavor encapsulation and release characteristics of spray-dried powder by the blended encapsulant of cyclodextrin and gum arabic. Drying Technology, 19, 1385–1395.
- Simpson, P. J., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2005). Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. Journal of Applied Microbiology, 99, 493–501.
- Sohail, A., Turner, M. S., Coombes, A., & Bhandari, B. (2013). The viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. Food and Bioprocess Technology, 6, 2763–2769.
- Tonon, R. V., Brabet, C., & Rubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried acai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43, 907–914.
- Vodnar, D. C., Socaciu, C., Rotar, A. M., & Stanila, A. (2010). Morphology, FTIR fingerprint and survivability of encapsulated lactic bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) in simulated gastric juice and intestinal juice. International Journal of Food Science & Technology, 45, 2345–2351.