Antioxidant properties of probiotic fermented milk supplemented with chestnut flour (Castanea sativa Mill)
Corresponding Author
Tulay Ozcan
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Correspondence Tulay Ozcan, Department of Food Engineering, Uludag University, Gorukle, Bursa 16059, Turkey. Email: [email protected]Search for more papers by this authorLutfiye Yilmaz-Ersan
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Search for more papers by this authorArzu Akpinar-Bayizit
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Search for more papers by this authorBerrak Delikanli
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Search for more papers by this authorCorresponding Author
Tulay Ozcan
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Correspondence Tulay Ozcan, Department of Food Engineering, Uludag University, Gorukle, Bursa 16059, Turkey. Email: [email protected]Search for more papers by this authorLutfiye Yilmaz-Ersan
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Search for more papers by this authorArzu Akpinar-Bayizit
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Search for more papers by this authorBerrak Delikanli
Department of Food Engineering, Uludag University, Gorukle, Bursa, 16059 Turkey
Search for more papers by this authorAbstract
The effect of sweet chestnut (Castanea sativa Mill) flour in stimulating the growth of probiotic bacteria in fermented skim milk produced with different probiotic strains, namely Lactobacillus acidophilus, L. rhamnosus and Bifidobacterium animalis subsp. lactis was evaluated. Microbial counts, pH, total titratable acidity (LA %) and syneresis were measured in fermented skim milk samples. Additionally, the antioxidant capacities of the samples were measured by Trolox equivalent antioxidant capacity (TEAC), free radical scavenging activity (DPPH), and Ferric Reducing-antioxidant Power (FRAP) assays. The viability and growth proportion index (GPI) of L. rhamnosus were significantly higher than those of L. acidophilus and B. lactis in all samples during storage. Results indicated that all probiotic fermented milks enriched with chestnut flour displayed significant probiotic viability (>7 log10 cfu/g) with high antioxidant capacities. L. acidophilus, L. rhamnosus and B. lactis survived throughout the shelf life of the chestnut-fermented skim milk, and remain at this satisfactory viability level even after 21 days of storage. The antioxidant capacity and phenolic contents were dependent on probiotic strains used.
Practical applications
Nowadays the focus is rather on the effects of foods on maintenance of health, well-being and prevention of certain diseases than simply satisfaction of appetite or nutrition. The consumers’ health consciousness due to the scientific knowledge of the interactions between diet and health is a driving factor to develop products with health-related claims such as probiotic foods. This paper investigated the effects of chestnut flour supplementation not only on viability of probiotic bacteria but also the antioxidant capacity and phenolic contents in fermented milk throughout predicted shelf life. The results indicated that chestnut flour could be used as prebiotic for further researches to develop dairy products to deliver probiotics.
REFERENCES
- Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocol, 2, 875–877.
- Anonymous. (2015). Retrieved from http://www.eurochestnut.com/wp-content/uploads/2015/09/CHESTNUT-CULTIVATION-IN-TURKEY.pdf
- AOAC. (2000). Official methods of analysis AOAC International ( 17th ed.). Washington, DC: Author.
- Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2008). Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chemistry, 107, 1106–1113.
- Barros, A. I. R. N. A., Nunes, F. M., Gonçalves, B., Bennett, R. N., & Silva, A. P. (2011). Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chemistry, 128, 165–172.
- Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Analytical Biochemistry, 239, 70–76.
-
Björneholm, S.,
Eklöw, A.,
Saarela, M., &
Mättö, J. (2002). Enumeration and identification of Lactobacillus paracasei subsp. paracasei F19. Microbial Ecology in Health and Disease, 14, 7–13.
10.1080/089106002760003288 Google Scholar
- Bounous, G., Botta, R., & Beccaro, G. (2000). The chestnut: The ultimate energy source nutritional value and alimentary benefits. Nucis Italia, 9, 44–50.
- Brunner, J. C., Spillman, H., & Puhan, Z. (1993). Changes in pH, free sulphydryl groups, oxygen and redox potential during fermentation of milk with Bifidobacterium longum. Milchwirtschaft, 22, 26–31.
- Chen, J., Lindmark-Mansson, H., Gorton, L., & Akesson, B. (2003). Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. International Dairy Journal, 13, 927–935.
- Chow, J. (2002). Probiotics and prebiotics: A brief overview. Journal of Renal Nutrition, 12, 76–86.
- Christopher, M. D., Reddy, V. P., & Venkateswarlu, K. (2009). Viability during storage of two Bifidobacterium bifidum strains in set and stirred flavored yogurts containing whey protein concentrates. Natural Product Radiance, 8, 25–31.
- Comba, L., Gay, P., Piccarolo, P., & Aimonino, D. R. (2009). Thermal processes in the candy process of chestnut. Acta Horticulturae, 866, 587–594.
- De Vasconcelos, M. C. B. M., Bennett, R. N., Rosa, E. A. S., & De Ferreira-Cardoso, J. V. (2007). Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation. Journal of Agricultural and Food Chemistry, 55, 3508–3516.
- De Vasconcelos, M. C. B. M., Bennet, R. N., Rosa, E. A. S., & Ferreira-Cardoso, J. V. (2010a). Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. Journal of the Science of Food and Agriculture, 90, 1578–1589.
- De Vasconcelos, M. C. B. M., Nunes, F., Garcia-Viguera, C., Bennett, R. N., Rosa, E. A. S., & Ferreira-Cardoso, J. V. (2010b). Industrial processing effects on chestnut fruits (Castanea sativa Mill.). Minerals, free sugars, carotenoids and antioxidant vitamins in chestnut fruits (Castanea sativa Mill.). International Journal of Food Science & Technology, 45, 496–505.
- Demiate, I. M., Oetterer, M., & Wosiacki, G. (2001). Characterization of chestnut (Castanea sativa Mill.) starch for industrial utilization. Brazilian Archives of Biology and Technology, 44, 69–78.
- Demirkesen, I., Mert, B., Sumnu, G., & Sahin, S. (2010). Utilization of chestnut flour in gluten-free bread formulations. Journal of Food Engineering, 101, 329–336.
- Ferdousi, R., Rouhi, M., Mohammadi, R., Mortazavian, A.M., Khosravidarani, K., & Rad, A.H. (2013). Evaluation of probiotic survivability in yogurt exposed to cold chain interruption. Iranian Journal of Pharmaceutical Research, 12, 139–144.
- Forssten, S. D., Lahtine, S. J., & Ouwehand, A. C. (2011). The intestinal microbiota and probiotics. In J. J. Malago, J. F. J. G. Koninkx, & R. Marinsek-Logar (Eds.), Probiotic bacteria and enteric infections (p. 41). Netherlands: Springer.
- Gauche, C., Tomazi, T., Barreto, P. L. M., Ogliari, P. J., & Bordignon-Luiz, M. (2009). Physical properties of yogurt manufactured with milk whey and trans glutaminase. LWT – Food Science and Technology, 42, 239–243.
- Godward, G., Sultana, K., Kailasapathy, K., Peiris, P., Arumugaswamy, R., & Reynolds, N. (2000). The importance of strain selection on the viability of probiotic bacteria in dairy foods. Milchwissenschaft, 55, 441–445.
- Heydari, S., Mortazavian, A. M., Mohammadifa, M. A., Ezzatpanah, H., Sohrabvandi, S., & Mohammadi, R. (2011). Biochemical, microbiological and sensory characteristics of probiotic yogurt containing various prebiotic or fiber compounds. Italian Journal of Food Science, 23, 153–163.
- Isik, E., Sahin, S., & Demir, C. (2013). Development of a new chromium reducing antioxidant capacity (CHROMAC) assay for plants and fruits. Talanta, 111, 119–112.
- Jimenez, A. M., Murcia, M. A., Parras, P., & Martinez-Tome, M. (2008). On the importance of adequately choosing the ingredients of yogurt and enriched milk for their antioxidant activity. International Journal of Food Science & Technology, 43, 1464–1473.
- Klaver, F. A. M., Kingma, F., & Weerkamp, A. H. (1993). Growth and survival of Bifidobacteria in milk. Netherlands Milk Dairy Journal, 47, 151–164.
- Korbekandi, H., Mortazavian, A. M., & Iravani, S. (2011). Technology and stability of probiotic in fermented milks. In N. Shah, A. G. Cruz, & J. A. F. Faria (Eds.), Probiotic and prebiotic foods: Technology, stability and benefits to the human health (p. 131). New York: Nova Science Publishers, Inc.
- Kurmann, J. A., & Rasic, J. L. (1991) . The health potential of products containing bifidobacteria. In R. K. Robinson (Ed.), Therapeutic properties of fermented milks (pp. 117–158). London: Elsevier.
- Lee, K. W., Kim, Y. J., Lee, H. J., & Lee, C. Y. (2003). Cocoa has more phenolics phytochemicals and a higher antioxidant capacity than teas and red wine. Journal of Agricultural and Food Chemistry, 51, 7292–7295.
- Leroy, F., & De Vuyst, L. (2004). Functional lactic acid bacteria starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15, 67–78.
- Lucas, A., Rock, E., Chamba, J. F., Verdier-Metz, I., Brachet, P., & Coulon, J. B. (2006). Respective effects of milk composition and the cheese-making process on cheese compositional variability in components of nutritional interest. Lait, 86, 21–41.
- Lucey, J. A., Munro, P. A., & Singh, H. (1998). Whey separation in acid skim milk gels made with glucono-δ-lactone: Effects of heat treatment and gelation temperature. Journal of Texture Studies, 29, 413–426.
- Martin, J. H., & Chou, K. M. (1992). Selection of Bifidobacteria for use as dietary adjuncts in cultured dairy foods: I - tolerance to pH of yogurt. Cultured Dairy Products Journal, 27, 21–25.
- Mortazavian, A. M., Ehsani, M. R., Azizi, A., Razavi, S. H., Mousavi, S. M., Sohrabvandi, S., & Reinheimer, J. A. (2008). Viability of calcium-alginate-microencapsulated probiotic bacteria in Iranian yogurt drink (Doogh) during refrigerated storage and under simulated gastrointestinal conditions. Australian Journal of Dairy Technology, 63, 24–29.
- Mortazavian, A. M., Ghorbanipour, S., Mohammadifar, M. A., & Mohammadi, M. (2011). Biochemical properties and viable probiotic population of yogurt at different bacterial inoculation rates and incubation temperatures. Philippine Agricultural Scientist, 94, 155–160.
- Mortazavian, A. M., Khosrokhvar, R., Rastegar, H., & Mortazaei, G. R. (2010). Effects of dry matter standardization order on biochemical and microbiological characteristics of freshly made probiotic Doogh (Iranian fermented milk drink). Italian Journal of Food Science, 22, 98–102.
- Murcia, M. A., Martiez-Tome, M., Jimenez, A. M., Vera, A. M., Honrabia, M., & Parras, P. (2002). Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. Journal of Food Protection, 65, 1614–1622.
- Neri, L., Dimitri, G., & Sacchetti, G. (2010). Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (Castanea sativa Mill.) ecotypes from Italy. Journal of Food Composition and Analysis, 23, 23–29.
- Nobakhti, A. R., Ehsani, M. R., Mousavi, S. M., & Mortazavian, A.M. (2008). Influence of lactulose and Hi-maize addition on viability of probiotic microorganisms in freshly made symbiotic fermented milk drink. Milchwissenschaft, 63, 427–429.
- Otles, S., & Selek, I. (2012). Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits. Quality Assurance and Safety of Crops & Foods, 4, 199–205.
- Ozcan, T., Yilmaz-Ersan, L., Akpinar-Bayizit, A., Sahin, O. I., & Aydinol, P. (2010). Viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 in rice pudding. Mljekarstvo : Journal for Dairy Production and Processing Improvement, 60, 135–144.
- Radi, M., Niakousari, M., & Amiri, S. (2009). Physicochemical, textural and sensory properties of low-fat yogurt produced by using modified wheat starch as a fat replacer. Journal of Applied Sciences, 9, 2194–2197.
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cations decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.
- Rybka, S., & Fleet, G. H. (1997). Populations of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacterium species in Australian yogurts. Food Australia, 49, 471–475.
- Saarela, M., Mogensen, G., Fonden, R., Matto, J., & Mattila-Sandholm, T. (2000). Probiotic bacteria: Safety, functional and technological properties. Journal of Biotechnology, 84, 197–215.
- Sacchetti, G., Pinnavaia, G. G., Guidolin, E., & Rosa, M. D. (2004). Effects of extrusion temperature and feed composition on the functional, physical and sensory properties of chestnut and rice flour-based snack-like products. Food Research International, 37, 527–534.
- Sahadeva, R. P. K., Leong, S. F., Chua, K. H., Tan, C. H., Chan, H. Y., Tong, E. V., …, Chan, H. K. (2011). Survival of commercial probiotic strains to pH and bile. International Food Research Journal, 18, 1515–1522.
-
Samona, A., &
Robinson, R. K. (2007). Effect of yogurt cultures on the survival of Bifidobacteria in fermented milks. Journal of the Society of Dairy Technology, 47, 58–60.
10.1111/j.1471-0307.1994.tb01273.x Google Scholar
- Sanders, M. E. (2008). Probiotics: Definition, sources, selection, and uses. Clinical Infectious Diseases, 46, 58–61.
- Sanz, Y. (2007). Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains. International Dairy Journal, 17, 1284–1289.
- Shafiee, G., Mortazavian, A. M., Mohammadifar, M. A., Koushki, M. R., Mohammadi, R., & Mohammadi, R. (2010a). Combined effects of dry matter content, incubation temperature and final pH of fermentation on biochemical and microbiological characteristics of probiotic fermented milk. African Journal of Microbiology Research, 4, 1265–1274.
- Shafiee, M., Taghavi, T. S., & Babalar, M. (2010b). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae, 124, 40–45.
- Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.
- Skrede, G., Bryhn-Larsen, V., Aaby, K., Skivik-Jorgensen, A., & Birkeland, S. E. (2004). Antioxidative properties of commercial fruit preparations and stability of bilberry and black currant extracts in milk products. Journal of Food Science, 69, 351–356.
- Soccol, C. R., de Souza-Vandenberghe, L. P., Spier, M. R., Pedroni-Medeiros, A. B., Yamaguishi, C. T., De Lindner, J., Pandey, A., & Thomaz-Soccoll, V. (2010). The potential of probiotics: A review. Food Technology and Biotechnology, 48, 413–434.
- Talwalker, A., & Kailasapathy, K. (2004). Comparative studies of selective and differential media for the accurate enumeration of strains of Lactobacillus acidophilus, Bifidobacterium spp. and L. casei complex from commercial yogurts. International Dairy Journal, 14, 143–149.
- Tamime, A. Y., Saarela, M., Korslund-Sondergaard, A., Mistry, V. V., & Shah, N. P. (2005). Production and maintenance of viability of probiotic micro-organisms in dairy products. In A. Y. Tamime (Ed.), Probiotic dairy product (pp. 39–72). London: Blackwell Publishing Ltd.
- Tharmaraj, N., & Shah, N. P. (2003). Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus and Propionibacteria. Journal of Dairy Science, 86, 2288–2296.
- Vinderola, C. G., Bailo, N., & Reinheimer, J. A. (2000). Survival of probiotic microflora in Argentinian yogurts during refrigerated storage. Food Research International, 33, 97–102.
- Wakeling, L. T., Mason, R. L., D'arcy, B. R., & Caffin, N. A. (2001). Composition of pecan cultivars Wichita and Western Schley (Carya illinoinensis (Wangenh.) K. Koch) grown in Australia. Journal of Agricultural and Food Chemistry, 49, 1277–1281.
- Wang, M., Tadnor, Y., Wu, Q. L., Chin, C. K., Garrison, S. A., & Simon, J. E. (2003). Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. Journal of Agricultural and Food Chemistry, 51, 6132–6136.
-
Wu, H.,
Hulbert, G. J., &
Mount, J. R. (2001). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science and Emerging Technologies, 1, 211–215.
10.1016/S1466-8564(00)00020-5 Google Scholar
- Yildiz, M. U., Ozcan, M. M., Calisir, S., Demir, F., & Er, F. (2009). Physico-chemical properties of chestnut (Castanea saliva Mill.) fruits grown in Turkey. World Applied Sciences Journal, 6, 365–372.
- Zulueta, A., Maurizi, A., Frigola, A., Esteve, M., Coli, R., & Burini, G. (2009). Antioxidant capacity of cow milk, whey and deproteinized milk. International Dairy Journal, 9, 380–385.