Current to Clean Water – Electrochemical Solutions for Groundwater, Water, and Wastewater Treatment
Ramona G. Simon
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorMarkus Stöckl
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorDennis Becker
DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorAnne-Dorothee Steinkamp
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorChristian Abt
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorChristina Jungfer
DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorClaudia Weidlich
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorThomas Track
DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorCorresponding Author
Klaus-Michael Mangold
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Correspondence: Klaus-Michael Mangold ([email protected]), DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany.Search for more papers by this authorRamona G. Simon
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorMarkus Stöckl
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorDennis Becker
DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorAnne-Dorothee Steinkamp
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorChristian Abt
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorChristina Jungfer
DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorClaudia Weidlich
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorThomas Track
DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Search for more papers by this authorCorresponding Author
Klaus-Michael Mangold
DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Correspondence: Klaus-Michael Mangold ([email protected]), DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany.Search for more papers by this authorAbstract
Electrochemical technologies for the treatment of industrial and municipal wastewaters, potable water, and groundwater, are presented, focusing on the main water constituents: inorganics, organics, micropollutants, and microorganisms. Removal of inorganic compounds by electrodialysis, electrocoagulation, and capacitive deionization as well as removal of organics and micropollutants by electrosorption, advanced oxidation processes, and anodic oxidation with boron-doped diamond electrodes are reviewed. Electricity can be generated by degradation of organic compounds in microbial fuel cells and dehalogenation by cathodic reduction minimizes toxic substances in water. The disinfection of different types of water is also presented and it is shown that electrochemical methods offer versatile approaches to contribute to an sustainable future water management.
References
- 1 J. Arle et al., Wasserwirtschaft in Deutschland – Grundlagen, Belastungen, Maßnahmen, Umweltbundesamt, Dessau-Roßlau 2017.
- 2
J. G. Speight, Environmental Inorganic Chemistry for Engineers, Elsevier, Oxford
2017.
10.1016/B978-0-12-849891-0.00001-1 Google Scholar
- 3Zukunftsfähige Technologien und Konzepte zur Erhöhung der Wasserverfügbarkeit durch Wasserwiederverwendung und Entsalzung, DECHEMA e.V., Frankfurt am Main 2016.
- 4 A. Ante et al., Trends und Perspektiven in der Industriellen Wassertechnik: Rohwasser – Prozess – Abwasser, Position Paper, DECHEMA e.V., Frankfurt am Main 2014.
- 5 T. Zheng, J. Wang, Q. Wang, H. Meng, L. Wang, Appl. Water Sci. 2017, 7 (1), 13 – 30. DOI: https://doi.org/10.1007/s13201-015-0280-4
- 6 J. H. Clark, Green Chem. 1999, 1 (1), 1 – 8. DOI: https://doi.org/10.1039/A807961G
- 7 Y. Feng, L. Yang, J. Liu, B. E. Logan, Environ. Sci.: Water Res. Technol. 2016, 2 (5), 800 – 831. DOI: https://doi.org/10.1039/C5EW00289C
- 8 J. Radjenovic, D. L. Sedlak, Environ. Sci. Technol. 2015, 49 (19), 11292 – 11302. DOI: https://doi.org/10.1021/acs.est.5b02414
- 9
J. G. Ibanez, C. Doria-Serrano, A. Fregoso-Infante, M. Hernandez-Esparza, M. M. Singh, Environmental Chemistry: Fundamentals, Springer, New York
2007.
10.1007/978-0-387-31435-8 Google Scholar
- 10 R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. von Gunten, B. Wehrli, Annu. Rev. Environ. Resour. 2010, 35 (1), 109 – 136. DOI: https://doi.org/10.1146/annurev-environ-100809-125342
- 11 W. L. Ang, A. W. Mohammad, N. Hilal, C. P. Leo, Desalination 2015, 363, 2 – 18. DOI: https://doi.org/10.1016/j.desal.2014.03.008
- 12 R. Weigelt, in Taschenbuch der Wasserversorgung, Vieweg, Wiesbaden 2007.
- 13 M. Ahn, R. Chilakala, C. Han, T. Thenepalli, Water 2018, 10 (1), 54. DOI: https://doi.org/10.3390/w10010054
- 14 R. Pawlowicz, Deep Sea Res., Part I 2015, 101, 71 – 79. DOI: https://doi.org/10.1016/j.dsr.2015.03.006
- 15 H. A. Dugan et al., Sci. Data 2017, 4, 170101. DOI: https://doi.org/10.1038/sdata.2017.101
- 16 H. T. El-Dessouky, H. M. Ettouney, Fundamentals of Salt Water Desalination, 1st ed., Elsevier, Amsterdam 2002.
- 17 A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, A. Cipollina, Desalination 2018, 434, 121 – 160. DOI: https://doi.org/10.1016/j.desal.2017.12.044
- 18 O. Lefebvre, R. Moletta, Water Res. 2006, 40 (20), 3671 – 3682. DOI: https://doi.org/10.1016/j.watres.2006.08.027
- 19 S. S. Kaushal, G. E. Likens, M. L. Pace, R. M. Utz, S. Haq, J. Gorman, M. Grese, Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (4), E574;–E583. DOI: https://doi.org/10.1073/pnas.1711234115
- 20 Soil Heavy Metals (Eds: I. Sherameti, A. Varma), Soil Biology, Vol. 19, Springer, Berlin 2010.
- 21Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, J. EC 1998, L330, 32.
- 22 R. Dixit et al., Sustainability 2015, 7 (2), 2189 – 2212. DOI: https://doi.org/10.3390/su7022189
- 23 C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, M. Naushad, J. Environ. Chem. Eng. 2017, 5 (3), 2782 – 2799. DOI: https://doi.org/10.1016/j.jece.2017.05.029
- 24 M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M. R. Qtaishat, M. Alkasrawi, Chem. Eng. J. 2015, 260, 749 – 756. DOI: https://doi.org/10.1016/j.cej.2014.09.035
- 25 P. C. Nagajyoti, K. D. Lee, T. V. M. Sreekanth, Environ. Chem. Lett. 2010, 8 (3), 199 – 216. DOI: https://doi.org/10.1007/s10311-010-0297-8
- 26 M. Chen, X.-M. Li, Q. Yang, G.-M. Zeng, Y. Zhang, D.-X. Liao, J.-J. Liu, J.-M. Hu, L. Guo, J. Hazard. Mater. 2008, 160 (2 – 3), 324 – 329. DOI: https://doi.org/10.1016/j.jhazmat.2008.03.036
- 27 D. L. Baun, T. H. Christensen, Waste Manage. Res. 2004, 22 (1), 3 – 23. DOI: https://doi.org/10.1177/0734242X04042146
- 28 C. Garbisu, I. Alkorta, Bioresour. Technol. 2001, 77 (3), 229 – 236. DOI: https://doi.org/10.1016/S0960-8524(00)00108-5
- 29 M. S. Islam, M. K. Ahmed, M. Raknuzzaman, M. Habibullah-Al-Mamun, M. K. Islam, Ecol. Indic. 2015, 48, 282 – 291. DOI: https://doi.org/10.1016/j.ecolind.2014.08.016
- 30 H. Strathmann, Desalination 2010, 264 (3), 268 – 288. DOI: https://doi.org/10.1016/j.desal.2010.04.069
- 31 E. R. Reahl, Half A Century of Desalination with Electrodialysis, Technical Paper, General Electric Co., Trevose, PA 2006. https://pdfs.semanticscholar.org/5391/c71537ced99f87e457413e9fb38776dc4abc.pdf (Accessed on April 10, 2018)
- 32 S. Dara, M. Lindstrom, J. English, A. Bonakdarpour, B. Wetton, D. P. Wilkinson, J. CO2 Util. 2017, 19, 177 – 184. DOI: https://doi.org/10.1016/j.jcou.2017.03.013
- 33 P. Malek, J. M. Ortiz, H. M. A. Schulte-Herbrüggen, Desalination 2016, 377, 54 – 64. DOI: https://doi.org/10.1016/j.desal.2015.08.023
- 34 R. Bisselink, W. de Schepper, J. Trampé, W. van den Broek, I. Pinel, A. Krutko, N. Groot, Water Resour. Ind. 2016, 14, 18 – 25. DOI: https://doi.org/10.1016/j.wri.2016.03.003
- 35 J. Morillo, J. Usero, D. Rosado, H. El Bakouri, A. Riaza, F. J. Bernaola, Desalination 2014, 336 (1), 32 – 49. DOI: https://doi.org/10.1016/j.desal.2013.12.038
- 36 T. Benvenuti, M. A. Siqueira Rodrigues, A. M. Bernardes, J. Zoppas-Ferreira, J. Cleaner Prod. 2017, 155 (1), 130 – 138. DOI: https://doi.org/10.1016/j.jclepro.2016.05.139
- 37 C. V. Gherasim, J. Křivčík, P. Mikulášek, Chem. Eng. J. 2014, 256, 324 – 334. DOI: https://doi.org/10.1016/j.cej.2014.06.094
- 38 L. Cifuentes, I. García, P. Arriagada, J. M. Casas, Sep. Purif. Technol. 2009, 68 (1), 105 – 108. DOI: https://doi.org/10.1016/j.seppur.2009.04.017
- 39 M.-S. Yeh, H.-H. Ou, Y.-C. Su, P.-H. Lin, J. Environ. Eng. 2016, 142 (10). DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001118
- 40 L. Marder, A. M. Bernardes, J. Z. Ferreira, Sep. Purif. Technol. 2004, 37 (3), 247 – 255. DOI: https://doi.org/10.1016/j.seppur.2003.10.011
- 41 A. Abou-Shady, Chem. Eng. J. 2017, 323, 1 – 18. DOI: https://doi.org/10.1016/j.cej.2017.04.083
- 42 D. Valero, V. García-García, E. Expósito, A. Aldaz, V. Montiel, J. Membr. Sci. 2015, 476, 580 – 589. DOI: https://doi.org/10.1016/j.memsci.2014.11.007
- 43 J. S. Park, J. H. Song, K. H. Yeon, S. H. Moon, Desalination 2007, 202 (1 – 3), 1 – 8. DOI: https://doi.org/10.1016/j.desal.2005.12.031
- 44 S. Zhao, G. Huang, G. Cheng, Y. Wang, H. Fu, Desalination 2014, 344, 454 – 462. DOI: https://doi.org/10.1016/j.desal.2014.04.014
- 45 F. Akbal, S. Camci, Environ. Prog. Sustainable Energy 2012, 31 (3), 340 – 350. DOI: https://doi.org/10.1002/ep.10546
- 46 E. Mohora, S. Rončević, B. Ž. Dalmacija, J. Agbaba, M. Watson, E. Karlović, M. Dalmacija, J. Hazard. Mater. 2012, 235 – 236, 257 – 264. DOI: https://doi.org/10.1016/j.jhazmat.2012.07.056
- 47 W. Tiemann, cav 2003, 3, 92.
- 48 Y.-J. Kim, J.-H. Choi, Sep. Purif. Technol. 2010, 71 (1), 70 – 75. DOI: https://doi.org/10.1016/j.seppur.2009.10.026
- 49 A. Rommerskirchen, Y. Gendel, M. Wessling, Electrochem. Commun. 2015, 60, 34 – 37. DOI: https://doi.org/10.1016/j.elecom.2015.07.018
- 50 M. Mossad, L. Zou, J. Hazard. Mater. 2012, 213 – 214, 491 – 497. DOI: https://doi.org/10.1016/j.jhazmat.2012.02.036
- 51 B. van Limpt, A. van der Wal, Desalination 2014, 342, 148 – 155. DOI: https://doi.org/10.1016/j.desal.2013.12.022
- 52 M. Mossad, W. Zhang, L. Zou, Desalination 2013, 308, 154 – 160. DOI: https://doi.org/10.1016/j.desal.2012.05.021
- 53 L. Marder, V. Pérez Herranz, in Electrodialysis and Water Reuse: Novel Approaches (Eds: A. Moura Bernardes, M. A. Siqueira Rodrigues, J. Z. Ferreira), Springer, Berlin 2014.
- 54 M. A. Andreeva, V. V. Gil, N. D. Pismenskaya, L. Dammak, N. A. Kononenko, C. Larchet, D. Grande, V. V. Nikonenko, J. Membr. Sci. 2018, 549, 129 – 140. DOI: https://doi.org/10.1016/j.memsci.2017.12.005
- 55 P. Długołęcki, J. Dabrowska, K. Nijmeijer, M. Wessling, J. Membr. Sci. 2010, 347 (1 – 2), 101 – 107. DOI: https://doi.org/10.1016/j.memsci.2009.10.011
- 56 L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, J. Membr. Sci. 2016, 497, 300 – 317. DOI: https://doi.org/10.1016/j.memsci.2015.09.006
- 57 J. G. D. Tadimeti, V. Kurian, A. Chandra, S. Chattopadhyay, J. Membr. Sci. 2016, 499, 418 – 428. DOI: https://doi.org/10.1016/j.memsci.2015.11.001
- 58 S. Pawlowski, T. Rijnaarts, M. Saakes, K. Nijmeijer, J. G. Crespo, S. Velizarov, J. Membr. Sci. 2017, 531, 111 – 121. DOI: https://doi.org/10.1016/j.memsci.2017.03.003
- 59 J. Balster, D. F. Stamatialis, M. Wessling, J. Membr. Sci. 2010, 360 (1 – 2), 185 – 189. DOI: https://doi.org/10.1016/j.memsci.2010.05.011
- 60 H. Strathmann, A. Grabowski, G. Eigenberger, Ind. Eng. Chem. Res. 2013, 52 (31), 10364 – 10379. DOI: https://doi.org/10.1021/ie4002102
- 61 A. Ortega, I. Oliva, K. E. Contreras, I. González, M. R. Cruz-Díaz, E. P. Rivero, Sep. Purif. Technol. 2017, 184, 319 – 326. DOI: https://doi.org/10.1016/j.seppur.2017.04.050
- 62 L. Fu, J. Wang, Y. Su, Sep. Purif. Technol. 2009, 68 (3), 390 – 396. DOI: https://doi.org/10.1016/j.seppur.2009.06.010
- 63 K. B. Pedersen, G. M. Kirkelund, L. M. Ottosen, P. E. Jensen, T. Lejon, J. Hazard. Mater. 2015, 283, 712 – 720. DOI: https://doi.org/10.1016/j.jhazmat.2014.10.016
- 64 R. Parés Viader, P. E. Jensen, L. M. Ottosen, Chemosphere 2017, 169, 62 – 68. DOI: https://doi.org/10.1016/j.chemosphere.2016.11.047
- 65 O. Merdoud, C. Cameselle, M. O. Boulakradeche, D. E. Akretche, Environ. Sci.: Processes Impacts 2016, 18 (11), 1440 – 1448. DOI: https://doi.org/10.1039/C6EM00380J
- 66 Y. Zhang, S. Paepen, L. Pinoy, B. Meesschaert, B. Van Der Bruggen, Sep. Purif. Technol. 2012, 88, 191 – 201. DOI: https://doi.org/10.1016/j.seppur.2011.12.017
- 67 B. Cohen, N. Lazarovitch, J. Gilron, Desalination 2017, 431, 126 – 139. DOI: https://doi.org/10.1016/j.desal.2017.10.030
- 68 X. Xu, Q. He, G. Ma, H. Wang, N. Nirmalakhandan, P. Xu, Desalination 2018, 428, 146 – 160. DOI: https://doi.org/10.1016/j.desal.2017.11.015
- 69 Q. B. Chen, Z. Y. Ji, J. Liu, Y. Y. Zhao, S. Z. Wang, J. S. Yuan, J. Membr. Sci. 2018, 548 (8), 408 – 420. DOI: https://doi.org/10.1016/j.memsci.2017.11.040
- 70 M. Tedesco, A. Cipollina, A. Tamburini, G. Micale, J. Membr. Sci. 2017, 522, 226 – 236. DOI: https://doi.org/10.1016/j.memsci.2016.09.015
- 71 C. Fernandez-Gonzalez, A. Dominguez-Ramos, R. Ibañez, A. Irabien, Renewable Sustainable Energy Rev. 2015, 47, 604 – 615. DOI: https://doi.org/10.1016/j.rser.2015.03.018
- 72 Economically and Ecologically Efficient Water Management in the European Chemical Industry: Solutions for Practice, DECHEMA e.V., Frankfurt am Main 2016.
- 73 D. Bhagawan, S. Poodari, T. Pothuraju, D. Srinivasulu, G. Shankaraiah, M. Yamuna Rani, V. Himabindu, S. Vidyavathi, Environ. Sci. Pollut. Res. 2014, 21 (24), 14166 – 14173. DOI: https://doi.org/10.1007/s11356-014-3331-8
- 74 M. Mollah, P. Morkovsky, J. Gomes, M. Kesmez, J. Parga, D. Cocke, J. Hazard. Mater. 2004, 114 (1 – 3), 199 – 210. DOI: https://doi.org/10.1016/j.jhazmat.2004.08.009
- 75 J. N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Desalination 2017, 404, 1 – 21. DOI: https://doi.org/10.1016/j.desal.2016.10.011
- 76 F. Fu, Q. Wang, J. Environ. Manage. 2011, 92 (3), 407 – 418. DOI: https://doi.org/10.1016/j.jenvman.2010.11.011
- 77 H. A. Kabuk, Y. Avsar, F. Ilhan, K. Ulucan, Sep. Sci. Technol. 2014, 49 (4), 613 – 618. DOI: https://doi.org/10.1080/01496395.2013.839705
- 78 G. Chen, Sep. Purif. Technol. 2004, 38 (1), 11 – 41. DOI: https://doi.org/10.1016/j.seppur.2003.10.006
- 79 E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam, A. H. Mahvi, J. Environ. Health Sci. Eng. 2015, 13 (1), 74. DOI: https://doi.org/10.1186/s40201-015-0233-8
- 80 J. N. Hakizimana, N. Najid, B. Gourich, C. Vial, Y. Stiriba, J. Naja, Chem. Eng. Sci. 2017, 170, 530 – 541. DOI: https://doi.org/10.1016/j.ces.2017.04.029
- 81 D. T. Moussa, M. H. El-Naas, M. Nasser, M. J. Al-Marri, J. Environ. Manage. 2017, 186 (1), 24 – 41. DOI: https://doi.org/10.1016/j.jenvman.2016.10.032
- 82 S. Garcia-Segura, M. M. S. G. Eiband, J. V. de Melo, C. A. Martínez-Huitle, J. Electroanal. Chem. 2017, 801, 267 – 299. DOI: https://doi.org/10.1016/j.jelechem.2017.07.047
- 83Electro-Chemical Treatment EC In Cooperation with Green Circle (EU) Ltd, presentation, novoflow GmbH, Rain/Lech 2018.
- 84 F. A. AlMarzooqi, A. A. Al Ghaferi, I. Saadat, N. Hilal, Desalination 2014, 342, 3 – 15. DOI: https://doi.org/10.1016/j.desal.2014.02.031
- 85 W. Huang, Y. Zhang, S. Bao, S. Song, Surf. Rev. Lett. 2013, 20 (6), 1330003. DOI: https://doi.org/10.1142/S0218625X13300050
- 86 Y. Oren, Desalination 2008, 228 (1 – 3), 10 – 29. DOI: https://doi.org/10.1016/j.desal.2007.08.005
- 87 S. Porada, R. Zhao, A. van der Wal, V. Presser, P. M. Biesheuvel, Prog. Mater. Sci. 2013, 58 (8), 1388 – 1442. DOI: https://doi.org/10.1016/j.pmatsci.2013.03.005
- 88 M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, V. Presser, Energy Environ. Sci. 2015, 8 (8), 2296 – 2319. DOI: https://doi.org/10.1039/c5ee00519a
- 89 A. Thamilselvan, A. S. Nesaraj, M. Noel, Int. J. Environ. Sci. Technol. 2016, 13 (12), 2961 – 2976. DOI: https://doi.org/10.1007/s13762-016-1061-9
- 90 M. A. Anderson, A. L. Cudero, J. Palma, Electrochim. Acta 2010, 55 (12), 3845 – 3856. DOI: https://doi.org/10.1016/j.electacta.2010.02.012
- 91 Z. Chen, C. Song, X. Sun, H. Guo, G. Zhu, Desalination 2011, 267 (2 – 3), 239 – 243. DOI: https://doi.org/10.1016/j.desal.2010.09.033
- 92 C.-H. Hou, J.-F. Huang, H.-R. Lin, B.-Y. Wang, J. Taiwan Inst. Chem. Eng. 2012, 43 (3), 473 – 479. DOI: https://doi.org/10.1016/j.jtice.2011.12.003
- 93 P.-I. Liu, L.-C. Chung, C.-H. Ho, H. Shao, T.-M. Liang, M.-C. Chang, C.-C. M. Ma, R.-Y. Horng, Desalination 2016, 379, 34 – 41. DOI: https://doi.org/10.1016/j.desal.2015.10.008
- 94 J.-H. Choi, Sep. Purif. Technol. 2010, 70 (3), 362 – 366. DOI: https://doi.org/10.1016/j.seppur.2009.10.023
- 95 L. Zou, G. Morris, D. Qi, Desalination 2008, 225 (1 – 3), 329 – 340. DOI: https://doi.org/10.1016/j.desal.2007.07.014
- 96 C.-H. Hou, C.-Y. Huang, Desalination 2013, 314, 124 – 129. DOI: https://doi.org/10.1016/j.desal.2012.12.029
- 97 J. C. Farmer, J. Electrochem. Soc. 1996, 143 (1), 159 – 169. DOI: https://doi.org/10.1149/1.1836402
- 98 J. Li, X. Wang, Q. Huang, S. Gamboa, P. J. Sebastian, J. Power Sources 2006, 158 (1), 784 – 788. DOI: https://doi.org/10.1016/j.jpowsour.2005.09.045
- 99 P. Xu, J. E. Drewes, D. Heil, G. Wang, Water Res. 2008, 42 (10 – 11), 2605 – 2617. DOI: https://doi.org/10.1016/j.watres.2008.01.011
- 100 M. Antonietti, N. Fechler, T.-P. Fellinger, Chem. Mater. 2013, 26 (1), 196 – 210. DOI: https://doi.org/10.1021/cm402239e
- 101 H.-J. Oh, J.-H. Lee, H.-J. Ahn, Y. Jeong, Y.-J. Kim, C.-S. Chi, Thin Solid Films 2006, 515 (1), 220 – 225. DOI: https://doi.org/10.1016/j.tsf.2005.12.146
- 102 E. Bayram, E. Ayranci, Environ. Sci. Technol. 2010, 44 (16), 6331 – 6336. DOI: https://doi.org/10.1021/es101177k
- 103 Q. Dong, G. Wang, B. Qian, C. Hu, Y. Wang, J. Qiu, Electrochim. Acta 2014, 137, 388 – 394. DOI: https://doi.org/10.1016/j.electacta.2014.06.067
- 104 A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, H. Y. Kim, New J. Chem. 2014, 38 (1), 198 – 205. DOI: https://doi.org/10.1039/C3NJ00576C
- 105 A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, H. Y. Kim, J. Mater. Chem. A 2013, 1 (36), 11001 – 11010. DOI: https://doi.org/10.1039/C3TA12450A
- 106 Y. Zhan, C. Nie, H. Li, L. Pan, Z. Sun, Phys. Status Solidi 2012, 9 (1), 55 – 58. DOI: https://doi.org/10.1002/pssc.201084169
- 107 G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, J. Qiu, Electrochim. Acta 2012, 69, 65 – 70. DOI: https://doi.org/10.1016/j.electacta.2012.02.066
- 108 M. Wang, Z.-H. Huang, L. Wang, M.-X. Wang, F. Kang, H. Hou, New J. Chem. 2010, 34 (9), 1843 – 1845. DOI: https://doi.org/10.1039/C0NJ00407C
- 109 M. V. Kiamahalleh, S. H. S. Zein, G. Najafpour, S. A. Sata, S. Buniran, Nano 2012, 7 (2), 1230002. DOI: https://doi.org/10.1142/S1793292012300022
- 110 L. Wang, M. Wang, Z.-H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, D. Wu, J. Mater. Chem. 2011, 21 (45), 18295 – 18299. DOI: https://doi.org/10.1039/C1JM13105B
- 111 H. Li, L. Pan, T. Lu, Y. Zhan, C. Nie, Z. Sun, J. Electroanal. Chem. 2011, 653 (1 – 2), 40 – 44. DOI: https://doi.org/10.1016/j.jelechem.2011.01.012
- 112 D. Zhang, L. Shi, J. Fang, K. Dai, X. Li, Mater. Chem. Phys. 2006, 97 (2 – 3), 415 – 419. DOI: https://doi.org/10.1016/j.matchemphys.2005.08.036
- 113 D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, J. Mater. Chem. 2012, 22 (29), 14696 – 14704. DOI: https://doi.org/10.1039/C2JM31393F
- 114 H. Li, L. Zou, L. Pan, Z. Sun, Environ. Sci. Technol. 2010, 44 (22), 8692 – 8697. DOI: https://doi.org/10.1021/es101888j
- 115 A. Aghigh, V. Alizadeh, H. Y. Wong, M. S. Islam, N. Amin, M. Zaman, Desalination 2015, 365, 389 – 397. DOI: https://doi.org/10.1016/j.desal.2015.03.024
- 116 Z. Li, B. Song, Z. Wu, Z. Lin, Y. Yao, K.-S. Moon, C. P. Wong, Nano Energy 2015, 11, 711 – 718. DOI: https://doi.org/10.1016/j.nanoen.2014.11.018
- 117 B. Jia, L. Zou, Carbon 2012, 50 (6), 2315 – 2321. DOI: https://doi.org/10.1016/j.carbon.2012.01.051
- 118 P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann, N. Jäckel, M. C. Tekeli, M. Aslan, M. E. Suss, V. Presser, J. Mater. Chem. A 2016, 4 (47), 18265 – 18271. DOI: https://doi.org/10.1039/C6TA07833H
- 119 S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J. S. Atchison, K. J. Keesman, S. Kaskel, P. M. Biesheuvel, V. Presser, Energy Environ. Sci. 2013, 6 (12), 3700 – 3712. DOI: https://doi.org/10.1039/C3EE42209G
- 120 S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P. M. Biesheuvel, ACS Appl. Mater. Interfaces 2012, 4 (3), 1194 – 1199. DOI: https://doi.org/10.1021/am201683j
- 121 Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, RSC Adv. 2015, 5 (20), 15205 – 15225. DOI: https://doi.org/10.1039/c4ra14447c
- 122 K.-K. Park, J.-B. Lee, P.-Y. Park, S.-W. Yoon, J.-S. Moon, H.-M. Eum, C.-W. Lee, Desalination 2007, 206 (1 – 3), 86 – 91. DOI: https://doi.org/10.1016/j.desal.2006.04.051
- 123 S. Nadakatti, M. Tendulkar, M. Kadam, Desalination 2011, 268 (1 – 3), 182 – 188. DOI: https://doi.org/10.1016/j.desal.2010.10.020
- 124 G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, J. Qiu, Sep. Purif. Technol. 2013, 103, 216 – 221. DOI: https://doi.org/10.1016/j.seppur.2012.10.041
- 125 C. Zhu, S. Guo, P. Wang, L. Xing, Y. Fang, Y. Zhai, S. Dong, Chem. Commun. 2010, 46 (38), 7148 – 7150. DOI: https://doi.org/10.1039/c0cc01459a
- 126 M. C. Zafra, P. Lavela, G. Rasines, C. Macías, J. L. Tirado, C. O. Ania, Electrochim. Acta 2014, 135, 208 – 216. DOI: https://doi.org/10.1016/j.electacta.2014.04.182
- 127 K. C. Leonard, W. E. Suyama, M. A. Anderson, Langmuir 2012, 28 (15), 6476 – 6484. DOI: https://doi.org/10.1021/la204173w
- 128 C. Kim, J. Lee, S. Kim, J. Yoon, Desalination 2014, 342, 70 – 74. DOI: https://doi.org/10.1016/j.desal.2013.07.016
- 129 L. Han, K. G. Karthikeyan, M. A. Anderson, J. J. Wouters, K. B. Gregory, Electrochim. Acta 2013, 90, 573 – 581. DOI: https://doi.org/10.1016/j.electacta.2012.11.069
- 130 D. Lu, W. Cai, Y. Wang, Desalination 2017, 424, 53 – 61. DOI: https://doi.org/10.1016/j.desal.2017.09.026
- 131 M. E. Suss, T. F. Baumann, W. L. Bourcier, C. M. Spadaccini, K. A. Rose, J. G. Santiago, M. Stadermann, Energy Environ. Sci. 2012, 5 (11), 9511 – 9519. DOI: https://doi.org/10.1039/c2ee21498a
- 132
J. W. Blair, G. W. Murphy, in Saline Water Conversion, Advances in Chemistry Series, Vol. 27, American Chemical Society, Washington, D.C.
1960, Ch. 20, 206 – 223. DOI: https://doi.org/10.1021/ba-1960-0027.ch020
10.1021/ba-1960-0027.ch020 Google Scholar
- 133 B. B. Arnold, G. W. Murphy, J. Phys. Chem. 1961, 65 (1), 135 – 138. DOI: https://doi.org/10.1021/j100819a038
- 134 A. M. Johnson, J. Newman, J. Electrochem. Soc. 1971, 118 (3), 510 – 517. DOI: https://doi.org/10.1149/1.2408094
- 135 Y. Oren, J. Electrochem. Soc. 1978, 125 (6), 869 – 875. DOI: https://doi.org/10.1149/1.2131570
- 136 R. Zhao, P. M. Biesheuvel, A. van der Wal, Energy Environ. Sci. 2012, 5 (11), 9520 – 9527. DOI: https://doi.org/10.1039/C2EE21737F
- 137 J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, Desalination 2006, 196 (1 – 3), 125 – 134. DOI: https://doi.org/10.1016/j.desal.2006.01.011
- 138 Y. Zhao, Y. Wang, R. Wang, Y. Wu, S. Xu, J. Wang, Desalination 2013, 324, 127 – 133. DOI: https://doi.org/10.1016/j.desal.2013.06.009
- 139 H. Li, L. Zou, Desalination 2011, 275 (1 – 3), 62 – 66. DOI: https://doi.org/10.1016/j.desal.2011.02.027
- 140 A. Omosebi, X. Gao, J. Landon, K. Liu, ACS Appl. Mater. Interfaces 2014, 6 (15), 12640 – 12649. DOI: https://doi.org/10.1021/am5026209
- 141 P. M. Biesheuvel, A. van der Wal, J. Membr. Sci. 2010, 346 (2), 256 – 262. DOI: https://doi.org/10.1016/j.memsci.2009.09.043
- 142 S. Yang, J. Choi, J.-G. Yeo, S.-I. Jeon, H.-R. Park, D. K. Kim, Environ. Sci. Technol. 2016, 50 (11), 5892 – 5899. DOI: https://doi.org/10.1021/acs.est.5b04640
- 143 K. B. Hatzell, E. Iwama, A. Ferris, B. Daffos, K. Urita, T. Tzedakis, Electrochem. Commun. 2014, 43, 18 – 21. DOI: https://doi.org/10.1016/j.elecom.2014.03.003
- 144 C. J. Linnartz, A. Rommerskirchen, M. Wessling, Y. Gendel, ACS Sustainable Chem. Eng. 2017, 5 (5), 3906 – 3912. DOI: https://doi.org/10.1021/acssuschemeng.6b03086
- 145 S.-C. Yang, S.-I. Jeon, H. Kim, J. Choi, J.-G. Yeo, H.-R. Park, D. K. Kim, ACS Sustainable Chem. Eng. 2016, 4 (8), 4174 – 4180. DOI: https://doi.org/10.1021/acssuschemeng.6b00689
- 146 S.-I. Jeon, J.-G. Yeo, S.-C. Yang, J. Choi, D. K. Kim, J. Mater. Chem. A 2014, 2 (18), 6378 – 6383. DOI: https://doi.org/10.1039/C4TA00377B
- 147 K. B. Hatzell, M. C. Hatzell, K. M. Cook, M. Boota, G. M. Housel, A. McBride, E. C. Kumbur, Y. Gogotsi, Environ. Sci. Technol. 2015, 49 (5), 3040 – 3047. DOI: https://doi.org/10.1021/es5055989
- 148 Y. Gendel, A. K. E. Rommerskirchen, O. David, M. Wessling, Electrochem. Commun. 2014, 46, 152 – 156. DOI: https://doi.org/10.1016/j.elecom.2014.06.004
- 149 S. Porada, D. Weingarth, H. V. M. Hamelers, M. Bryjak, V. Presser, P. M. Biesheuvel, J. Mater. Chem. A 2014, 2 (24), 9313 – 9321. DOI: https://doi.org/10.1039/C4TA01783H
- 150 A. Rommerskirchen, B. Ohs, K. A. Hepp, R. Femmer, M. Wessling, J. Membr. Sci. 2018, 546, 188 – 196. DOI: https://doi.org/10.1016/j.memsci.2017.10.026
- 151 S.-I. Jeon, H.-R. Park, J.-G. Yeo, S.-C. Yang, C. H. Cho, M. H. Han, D. K. Kim, Energy Environ. Sci. 2013, 6 (5), 1471 – 1475. DOI: https://doi.org/10.1039/C3EE24443A
- 152 S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J. S. Atchison, K. J. Keesman, S. Kaskel, P. M. Biesheuvel, V. Presser, Energy Environ. Sci. 2013, 6 (12), 3700 – 3712. DOI: https://doi.org/10.1039/C3EE42209G
- 153 X. Gao, A. Omosebi, J. Landon, K. Liu, Electrochem. Commun. 2014, 39, 22 – 25. DOI: https://doi.org/10.1016/j.elecom.2013.12.004
- 154 T. Kim, J. E. Dykstra, S. Porada, A. van der Wal, J. Yoon, P. M. Biesheuvel, J. Colloid Interface Sci. 2015, 446, 317 – 326. DOI: https://doi.org/10.1016/j.jcis.2014.08.041
- 155 H. Li, C. Nie, L. Pan, Z. Sun, Desalin. Water Treat. 2012, 42 (1 – 3), 210 – 215. DOI: https://doi.org/10.1080/19443994.2012.683159
- 156 H. Wendt, G. Kreysa, Electrochemical Engineering – Science and Technology in Chemical and Other Industries, Springer, Berlin 1999.
- 157 D. Prieto, N. Swinnen, L. Blanco, D. Hermosilla, P. Cauwenberg, Á. Blanco, C. Negro, Water Resour. Ind. 2016, 14, 26 – 30. DOI: https://doi.org/10.1016/j.wri.2016.03.004
- 158Water-Reuse in Industrieparks, Technische Universität Darmstadt, Darmstadt 2018. www.wareip.de/
- 159WEISS – Effiziente Kreislaufführung von Kühlwasser durch integrierte Entsalzung am Beispiel der Stahlindustrie, VDEh-Betriebsforschungsinstitut GmbH, Düsseldorf 2018. www.bfi.de/de/projekte/weiss-effiziente-kreislauffuehrung-von-kuehlwasser-durch-integrierte-entsalzung-am-beispiel-der-stahlindustrie/
- 160 V. F. Medina, J. L. Johnson, S. A. Waisner, R. Wade, J. Mattei-Sosa, J. Environ. Eng. 2015, 141 (7), 04015002. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000929
- 161 A. Giwa, V. Dufour, F. Al Marzooqi, M. Al Kaabi, S. W. Hasan, Desalination 2017, 407, 1 – 23. DOI: https://doi.org/10.1016/j.desal.2016.12.008
- 162 P. F. Tee, M. O. Abdullah, I. A. W. Tan, N. K. A. Rashid, M. A. M. Amin, C. Nolasco-Hipolito, K. Bujang, Renewable Sustainable Energy Rev. 2016, 54, 235 – 246. DOI: https://doi.org/10.1016/j.rser.2015.10.011
- 163 X. Wang, Y. J. Feng, H. Lee, Water Sci. Technol. 2008, 57 (7), 1117 – 1121. DOI: https://doi.org/10.2166/wst.2008.064
- 164 S. A. Patil, V. P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Y. S. Shouche, B. P. Kapadnis, Bioresour. Technol. 2009, 100 (21), 5132 – 5139. DOI: https://doi.org/10.1016/j.biortech.2009.05.041
- 165 D. Valero, V. García-García, E. Expósito, A. Aldaz, V. Montiel, Sep. Purif. Technol. 2014, 123, 15 – 22. DOI: https://doi.org/10.1016/j.seppur.2013.12.023
- 166 V. Gupta, B. Mazumdar, N. Acharya, Int. J. Energy Technol. Policy 2017, 13 (1 – 2), 10 – 12. DOI: https://doi.org/10.1504/IJETP.2017.080625
- 167 A. Cruz-Rizo, S. Gutiérrez-Granados, R. Salazar, J. M. Peralta-Hernández, Sep. Purif. Technol. 2017, 172, 296 – 302. DOI: https://doi.org/10.1016/j.seppur.2016.08.029
- 168 C. Feng, N. Sugiura, S. Shimada, T. Maekawa, J. Hazard. Mater. 2003, 103 (1 – 2), 65 – 78. DOI: https://doi.org/10.1016/S0304-3894(03)00222-X
- 169 F. Duan, Y. Li, H. Cao, Y. Wang, J. C. Crittenden, Y. Zhang, Chemosphere 2015, 125, 205 – 211. DOI: https://doi.org/10.1016/j.chemosphere.2014.12.065
- 170 B. Gomez-Ruiz, S. Gómez-Lavín, N. Diban, V. Boiteux, A. Colin, X. Dauchy, A. Urtiaga, Chem. Eng. J. 2017, 322, 196 – 204. DOI: https://doi.org/10.1016/j.cej.2017.04.040
- 171 H. A. Moreno-Casillas, D. L. Cocke, J. A. G. Gomes, P. Morkovsky, J. R. Parga, E. Peterson, Sep. Purif. Technol. 2007, 56 (2), 204 – 211. DOI: https://doi.org/10.1016/j.seppur.2007.01.031
- 172Verordnung über Anforderungen an das Einleiten von Abwasser in Gewässer (Abwasserverordnung – AbwV), Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit, Bonn 1997.
- 173 R. P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. von Gunten, B. Wehrli, Science 2006, 313 (5790), 1072 – 1077. DOI: https://doi.org/10.1126/science.1127291
- 174 C. Stamm, K. Räsänen, F. J. Burdon, F. Altermatt, J. Jokela, A. Joss, M. Ackermann, R. I. L. Eggen, Adv. Ecol. Res. 2016, 55, 183 – 223. DOI: https://doi.org/10.1016/BS.AECR.2016.07.002
- 175 L. Morris, V. Colombo, K. Hassell, C. Kellar, P. Leahy, S. M. Long, J. H. Myers, V. Pettigrove, Sci. Total Environ. 2017, 580, 1327 – 1339. DOI: https://doi.org/10.1016/J.SCITOTENV.2016.12.096
- 176 E. J. Tiedeken, A. Tahar, B. McHugh, N. J. Rowan, Sci. Total Environ. 2017, 574, 1140 – 1163.
- 177 K. Kümmerer, J. Environ. Manage. 2009, 90 (8), 2354 – 2366. DOI: https://doi.org/10.1016/j.jenvman.2009.01.023
- 178Contaminants of Emerging Concern Including Pharmaceuticals and Personal Care Products, U.S. Environmental Protection Agency, Washington, D.C. 2008.
- 179 S. Garcia-Segura, M. M. S. G. Eiband, J. V. de Melo, C. A. Martínez-Huitle, J. Electroanal. Chem. 2017, 801, 267 – 299. DOI: https://doi.org/10.1016/j.jelechem.2017.07.047
- 180 O. T. Can, M. Kobya, E. Demirbas, M. Bayramoglu, Chemosphere 2006, 62 (2), 181 – 187. DOI: https://doi.org/10.1016/j.chemosphere.2005.05.022
- 181 B.-Y. Tak, B.-S. Tak, Y.-J. Kim, Y.-J. Park, Y.-H. Yoon, G.-H. Min, J. Ind. Eng. Chem. 2015, 28, 307 – 315. DOI: https://doi.org/10.1016/j.jiec.2015.03.008
- 182 M. Stöckl, Attachment under Current – Biofilm Formation by Electroactive Bacteria, Dissertation, University of Duisburg-Essen, Essen 2017. DOI: https://doi.org/10.2370/9783844057997
- 183 T. Krieg, A. Sydow, U. Schröder, J. Schrader, D. Holtmann, Trends Biotechnol. 2014, 32 (12), 645 – 655. DOI: https://doi.org/10.1016/j.tibtech.2014.10.004
- 184 M. A. Rodrigo, P. Cañizares, J. Lobato, R. Paz, C. Sáez, J. J. Linares, J. Power Sources 2007, 169 (1), 198 – 204. DOI: https://doi.org/10.1016/j.jpowsour.2007.01.054
- 185 S. V. Mohan, S. Srikanth, P. N. Sarma, Bioelectrochemistry 2009, 75 (2), 130 – 135. DOI: https://doi.org/10.1016/j.bioelechem.2009.03.002
- 186 L. Huang, B. E. Logan, Appl. Microbiol. Biotechnol. 2008, 80 (2), 349 – 355. DOI: https://doi.org/10.1007/s00253-008-1546-7
- 187 S. Oh, B. E. Logan, Water Res. 2005, 39 (19), 4673 – 4682. DOI: https://doi.org/10.1016/j.watres.2005.09.019
- 188 H. Hiegemann, D. Herzer, E. Nettmann, M. Lübken, P. Schulte, K. G. Schmelz, S. Gredigk-Hoffmann, M. Wichern, Bioresour. Technol. 2016, 218, 115 – 122. DOI: https://doi.org/10.1016/j.biortech.2016.06.052
- 189 T. Kim, J. An, J. K. Jang, I. S. Chang, Bioresour. Technol. 2015, 195, 217 – 222. DOI: https://doi.org/10.1016/j.biortech.2015.06.009
- 190 L. Ren, Y. Ahn, B. E. Logan, Environ. Sci. Technol. 2014, 48 (7), 4199 – 4206. DOI: https://doi.org/10.1021/es500737m
- 191 X. Jiang, D. Ying, D. Ye, R. Zhang, Q. Guo, Y. Wang, J. Jia, Bioresour. Technol. 2018, 252, 134 – 142. DOI: https://doi.org/10.1016/j.biortech.2017.12.078
- 192 L. He, P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, Z. Wang, Renewable Sustainable Energy Rev. 2017, 71, 388 – 403. DOI: https://doi.org/10.1016/j.rser.2016.12.069
- 193 W.-W. Li, H.-Q. Yu, Z. He, Energy Environ. Sci. 2013, 7 (3), 911 – 924. DOI: https://doi.org/10.1039/C3EE43106A
- 194 P. Liang, R. Duan, Y. Jiang, X. Zhang, Y. Qiu, X. Huang, Water Res. 2018, 141, 1 – 8. DOI: https://doi.org/10.1016/j.watres.2018.04.066
- 195 H. Hiegemann, M. Lübken, P. Schulte, K. G. Schmelz, S. Gredigk-Hoffmann, M. Wichern, Sci. Total Environ. 2018, 624, 34 – 39. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.072
- 196 T. Krieg, L. M. P. Phan, J. A. Wood, A. Sydow, I. Vassilev, J. O. Krömer, K.-M. Mangold, D. Holtmann, Biotechnol. Bioeng. 2018, 115 (7), 1705 – 1716. DOI: https://doi.org/10.1002/bit.26600
- 197 C. H. Hamann, W. Vielstich, Elektrochemie, 4th ed., Wiley-VCH, Weinheim 2005.
- 198 K. Y. Foo, B. H. Hameed, J. Hazard. Mater. 2009, 170 (2), 552 – 559. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.057
- 199 A. Ban, A. Schafer, H. Wendt, J. Appl. Electrochem. 1998, 28 (3), 227 – 236. DOI: https://doi.org/10.1023/A:1003247229049
- 200 R. M. Narbaitz, A. Karimi-Jashni, Chem. Eng. J. 2012, 197, 414 – 423. DOI: https://doi.org/10.1016/j.cej.2012.05.049
- 201 L. Wang, N. Balasubramanian, Chem. Eng. J. 2009, 155 (3), 763 – 768. DOI: https://doi.org/10.1016/j.cej.2009.09.020
- 202 C. H. Weng, M. C. Hsu, Sep. Purif. Technol. 2008, 64 (2), 227 – 236. DOI: https://doi.org/10.1016/j.seppur.2008.10.006
- 203 M. H. Zhou, L. C. Lei, Electrochim. Acta 2006, 51 (21), 4489 – 4496. DOI: https://doi.org/10.1016/j.electacta.2005.12.028
- 204 R. M. Narbaitz, A. Karimi-Jashni, Environ. Technol. 2009, 30 (1), 27 – 36. DOI: https://doi.org/10.1080/09593330802422803
- 205 R. M. Narbaitz, J. McEwen, Water Res. 2012, 46 (15), 4852 – 4860. DOI: https://doi.org/10.1016/j.watres.2012.05.046
- 206 R. M. Narbaitz, J. Cen, Water Res. 1994, 28 (8), 1771 – 1778. DOI: https://doi.org/10.1016/0043-1354(94)90250-X
- 207 R. Berenguer, J. P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Carbon 2009, 47 (4), 1018 – 1027. DOI: https://doi.org/10.1016/j.carbon.2008.12.022
- 208 R. Berenguer, J. P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Carbon 2010, 48 (10), 2734 – 2745. DOI: https://doi.org/10.1016/j.carbon.2010.03.071
- 209ElektroWirbel – Schließung industrieller Stoffkreisläufe durch neue elektrochemische Wirbelbettreaktoren, DECHEMA-Forschungsinstitut, Frankfurt am Main 2018. http://dechema-dfi.de/-p-120015.html?rewrite_engine=id
- 210Re-Salt: Recycling von industriellen salzhaltigen Prozesswässern, DECHEMA-Forschungsinstitut, Frankfurt am Main 2018. available at http://dechema-dfi.de/-p-121570.html?rewrite_engine=id
- 211 N. Hoda, E. Bayram, E. Ayranci, J. Hazard. Mater. 2006, 137 (1), 344 – 351. DOI: https://doi.org/j.jhazmat.2006.02.009
- 212 E. Bayram, E. Ayranci, Sep. Purif. Technol. 2012, 86, 113 – 118. DOI: https://doi.org/10.1016/j.seppur.2011.10.032
- 213 E. Bayram, N. Hoda, E. Ayranci, J. Hazard. Mater. 2009, 168 (2), 1459 – 1466. DOI: https://doi.org/10.1016/j.jhazmat.2009.03.039
- 214 E. Bayram, E. Ayranci, Carbon 2010, 48 (6), 1718 – 1730. DOI: https://doi.org/10.1016/j.carbon.2010.01.013
- 215 E. Bayram, Ç. Kizil, E. Ayranci, Water Sci. Technol. 2018, 77 (3), 848 – 854. DOI: https://doi.org/10.2166/wst.2017.598
- 216
Y. Han, X. Quan, H. Zhao, S. Chen, Y. Zhao, Front. Environ. Sci. Eng. China
2007, 1 (1), 83 – 88. DOI: https://doi.org/10.1007/s11783-007-0016-2
10.1007/s11783-007-0016-2 Google Scholar
- 217 Y. Han, X. Quan, S. Chen, H. Zhao, C. Cui, Y. Zhao, Sep. Purif. Technol. 2006, 50 (3), 365 – 372. DOI: https://doi.org/10.1016/j.seppur.2005.12.011
- 218 R. P. P. L. Ribeiro, C. A. Grande, A. E. Rodrigues, Sep. Sci. Technol. 2014, 49 (13), 1985 – 2002. DOI: https://doi.org/10.1080/01496395.2014.915854
- 219 C. A. Grande, R. P. L. Ribeiro, E. L. G. Oliveira, A. E. Rodrigues, Energy Procedia 2009, 1 (1), 1219 – 1225. DOI: https://doi.org/10.1016/j.egypro.2009.01.160
- 220 I. Gehrke, ZeroTrace: Neue Adsorptionsmaterialien und Regenerationsverfahren zur Elimination von Spurenstoffen in kommunalen und industriellen Kläranlagen, MachWas-Statustreffen, Frankfurt am Main, April 2017. http://machwas-material.de/ZeroTrace.html
- 221www.arviatechnology.com (Accessed on May 08, 2018)
- 222 H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, A. K. Campen, N. W. Brown, J. Ind. Eng. Chem. 2013, 19 (5), 1689 – 1696. DOI: https://doi.org/10.1016/j.jiec.2013.02.007
- 223 S. N. Hussain, E. P. L. Roberts, H. M. A. Asghar, A. K. Campen, N. W. Brown, Electrochim. Acta 2013, 92, 20 – 30. DOI: https://doi.org/10.1016/j.electacta.2013.01.020
- 224 H. Sun, Z. Liu, Y. Wang, Y. Li, J. Environ. Sci. 2013, 25 (S1), S77 – S79. DOI: https://doi.org/10.1016/S1001-0742(14)60630-6
- 225 A. Karimi-Jashni, R. M. Narbaitz, J. Environ. Eng. 2005, 131 (3), 443 – 449. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(443)
- 226 N. W. Brown, E. P. L. Roberts, A. A. Garforth, R. A. W. Dryfe, Electrochim. Acta 2004, 49 (20), 3269 – 3281. DOI: https://doi.org/10.1016/j.electacta.2004.02.040
- 227 M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. 2009, 35 (2), 402 – 417. DOI: https://doi.org/10.1016/j.envint.2008.07.009
- 228 F. C. Moreira, R. A. R. Boaventura, E. Brillas, V. J. P. Vilar, Appl. Catal., B 2017, 202, 217 – 261. DOI: https://doi.org/10.1016/j.apcatb.2016.08.037
- 229 G. Boczkaj, A. Fernandes, P. Makoś, Ind. Eng. Chem. Res. 2017, 56 (31), 8806 – 8814. DOI: https://doi.org/10.1021/acs.iecr.7b01507
- 230 C. Prasse, D. Stalter, U. Schulte-Oehlmann, J. Oehlmann, T. A. Ternes, Water Res. 2015, 87, 237 – 270. DOI: https://doi.org/10.1016/J.WATRES.2015.09.023
- 231 N. Le-Minh, S. J. Khan, J. E. Drewes, R. M. Stuetz, Water Res. 2010, 44 (15), 4295 – 4323. DOI: https://doi.org/10.1016/J.WATRES.2010.06.020
- 232
Y.-H. Wang, Q.-Y. Chen, Int. J. Electrochem.
2013, 2013, 128248. DOI: https://doi.org/10.1155/2013/128248
10.1155/2013/128248 Google Scholar
- 233 A. M. Trautmann, H. Schell, K. R. Schmidt, K. M. Mangold, A. Tiehm, Water Sci. Technol. 2015, 71 (10), 1569 – 1575. DOI: https://doi.org/10.2166/wst.2015.143
- 234 W. Wu, Z. Huang, T. Lim, J. Environ. Chem. Eng. 2016, 4 (3), 2807 – 2815. DOI: https://doi.org/10.1016/j.jece.2016.05.034
- 235 M. Fryda, T. Matthée, S. Mulcahy, A. Hampel, L. Schäfer, I. Tröster, Diamond Relat. Mater. 2003, 12 (10 – 11), 1950 – 1956. DOI: https://doi.org/10.1016/S0925-9635(03)00261-9
- 236 J. V. Macpherson, Phys. Chem. Chem. Phys. 2015, 17 (5), 2935 – 2949. DOI: https://doi.org/10.1039/C4CP04022H
- 237 A. Kraft, Int. J. Electrochem. Sci. 2007, 2 (5), 355 – 385.
- 238 L. M. Da Silva, L. A. De Faria, J. F. C. Boodts, Electrochim. Acta 2003, 48 (6), 699 – 700. DOI: https://doi.org/10.1016/S0013-4686(02)00739-9
- 239 T. A. Enache, A. M. Chiorcea-Paquim, O. Fatibello-Filho, A. M. Oliveira-Brett, Electrochem. Commun. 2009, 11 (7), 1342 – 1345. DOI: https://doi.org/10.1016/j.elecom.2009.04.017
- 240 O. Debus, Oxidation von Abwasserschadstoffen mit synthetischen Diamant-Elektroden, Pharma+Food, Hüthig, Heidelberg 2018. www.pharma-food.de/oxidation-von-abwasserschadstoffen-mit-synthetischen-diamant-elektroden/
- 241 V. Schmalz, T. Dittmar, D. Haaken, E. Worch, Water Res. 2009, 43 (20), 5260 – 5266. DOI: https://doi.org/10.1016/j.watres.2009.08.036
- 242 A. Anglada, A. Urtiaga, I. Ortiz, J. Chem. Technol. Biotechnol. 2009, 84 (12), 1747 – 1755. DOI: https://doi.org/10.1002/jctb.2214
- 243 M. D. Rajab, Electrochemical Oxidation Using Boron-Doped Diamond Electrode as a Water Treatment Process – Removal of Residual Micropollutants and Inactivation of Microorganisms, Dissertation, Technische Universität München 2015.
- 244 M. J. Ureña de Vivanco, Characterisation of a Boron-Doped Diamond Electrode and Applications for the Oxidation of Pharmaceutical Substances and Disinfection in Water, Dissertation, Technische Universität München 2013.
- 245 C. A. Martínez-Huitle, Mater. Res. 2007, 10 (4), 419 – 424. DOI: https://doi.org/10.1590/S1516-14392007000400016
- 246 M. A. García-Morales, G. Roa-Morales, C. Barrera-Díaz, B. Bilyeu, M. A. Rodrigo, Electrochem. Commun. 2013, 27, 34 – 37. DOI: https://doi.org/10.1016/j.elecom.2012.10.028
- 247 S. Garcia-Segura, J. D. Ocon, M. N. Chong, Process Saf. Environ. Prot. 2018, 113, 48 – 67. DOI: https://doi.org/10.1016/j.psep.2017.09.014
- 248 A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem., Int. Ed. 2018, 57 (20), 5594 – 5619. DOI: https://doi.org/10.1002/anie.201711060
- 249 E. V. dos Santos, C. Sáez, P. Cañizares, D. R. da Silva, C. A. Martínez-Huitle, M. A. Rodrigo, Chem. Eng. J. 2017, 310 (2), 581 – 588. DOI: https://doi.org/10.1016/j.cej.2016.05.015
- 250 I. Jum'h, A. Abdelhay, H. Al-Taani, A. Telfah, M. Alnaief, S. Rosiwal, J. Water Reuse Desalin. 2017, 7 (4), 502 – 510. DOI: https://doi.org/10.2166/wrd.2016.062
- 251 M. A. García-Morales, G. Roa-Morales, C. Barrera-Díaz, B. Bilyeu, M. A. Rodrigo, Electrochem. Commun. 2013, 27, 34 – 37. DOI: https://doi.org/10.1016/j.elecom.2012.10.028
- 252 S. Qiu, D. He, J. Ma, T. Liu, T. D. Waite, Electrochim. Acta 2015, 176, 51 – 58. DOI: https://doi.org/10.1016/j.electacta.2015.06.103
- 253 M. Umar, H. A. Aziz, M. S. Yusoff, Waste Manage. 2010, 30 (11), 2113 – 2121. DOI: https://doi.org/10.1016/j.wasman.2010.07.003
- 254 A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng. 2014, 2 (1), 557 – 572. DOI: https://doi.org/10.1016/j.jece.2013.10.011
- 255 M. Popescu, C. Sandu, E. Rosales, M. Pazos, G. Lazar, M. Á. Sanromán, J. Electroanal. Chem. 2018, 808, 455 – 463. DOI: https://doi.org/10.1016/j.jelechem.2017.04.047
- 256 X. Yu, M. Zhou, G. Ren, L. Ma, Chem. Eng. J. 2015, 263, 92 – 100. DOI: https://doi.org/10.1016/j.cej.2014.11.053
- 257 K. Cruz-González, O. Torres-López, A. García-León, J. L. Guzmán-Mar, L. H. Reyes, A. Hernández-Ramírez, J. M. Peralta-Hernández, Chem. Eng. J. 2010, 160 (1), 199 – 206. DOI: https://doi.org/10.1016/j.cej.2010.03.043
- 258 E. Brillas, M. Á. Baños, M. Skoumal, P. L. Cabot, J. A. Garrido, R. M. Rodríguez, Chemosphere 2007, 68 (2), 199 – 209. DOI: https://doi.org/10.1016/j.chemosphere.2007.01.038
- 259 S. O. Ganiyu, M. Zhou, C. A. Martínez-Huitle, Appl. Catal., B 2018, 235, 103 – 129. DOI: https://doi.org/10.1016/j.apcatb.2018.04.044
- 260 P. V. Nidheesh, R. Gandhimathi, Desalination 2012, 299, 1 – 15. DOI: https://doi.org/10.1016/j.desal.2012.05.011
- 261 U. Kurt, O. Apaydin, M. T. Gonullu, J. Hazard. Mater. 2007, 143 (1 – 2), 33 – 40. DOI: https://doi.org/10.1016/j.jhazmat.2006.08.065
- 262 I. Sirés, C. Arias, P. L. Cabot, F. Centellas, J. A. Garrido, R. M. Rodríguez, E. Brillas, Chemosphere 2007, 66 (9), 1660 – 1669. DOI: https://doi.org/10.1016/j.chemosphere.2006.07.039
- 263 A. Babuponnusami, K. Muthukumar, Chem. Eng. J. 2012, 183, 1 – 9. DOI: https://doi.org/10.1016/j.cej.2011.12.010
- 264 G. R. Agladze, G. S. Tsurtsumia, B. I. Jung, J. S. Kim, G. Gorelishvili, J. Appl. Electrochem. 2007, 37 (9), 985 – 990. DOI: https://doi.org/10.1007/s10800-007-9325-1
- 265 D. Gümüş, F. Akbal, Process Saf. Environ. Prot. 2016, 103 (3), 252 – 258. DOI: https://doi.org/10.1016/j.psep.2016.07.008
- 266 M. Pimentel, N. Oturan, M. Dezotti, M. A. Oturan, Appl. Catal., B 2008, 83 (1 – 2), 140 – 149. DOI: https://doi.org/10.1016/j.apcatb.2008.02.011
- 267 T. Li, J. Farrell, Environ. Sci. Technol. 2001, 35 (17), 3560 – 3565. DOI: https://doi.org/10.1021/es0019878
- 268 W. W. Mohn, J. M. Tiedje, Microbiol. Rev. 1992, 56 (3), 482 – 507.
- 269 A. Tiehm, S. Lohner, T. Augenstein, D. Becker, C. Weidlich, K.-M. Mangold, K. Jüttner, Chem. Ing. Tech. 2008, 80 (7), 967 – 974. DOI: https://doi.org/10.1002/cite.200800034
- 270 M. Yan, Z. Chen, N. Li, Y. Zhou, C. Zhang, G. Korshin, Water Res. 2018, 136, 104 – 111. DOI: https://doi.org/10.1016/j.watres.2018.02.045
- 271 E. Bocos, N. Oturan, M. Á. Sanromán, M. A. Oturan, J. Electroanal. Chem. 2016, 772, 1 – 8. DOI: https://doi.org/10.1016/j.jelechem.2016.04.011
- 272 M. E. H. Bergmann, J. Rollin, Catal. Today 2007, 124 (3), 198 – 203. DOI: https://doi.org/10.1016/j.cattod.2007.03.038
- 273 A. M. Polcaro, A. Vacca, M. Mascia, F. Ferrara, J. Appl. Electrochem. 2008, 38 (7), 979 – 984. DOI: https://doi.org/10.1007/s10800-008-9509-3
- 274 S. T. Lohner, D. Becker, K.-M. Mangold, A. Tiehm, Environ. Sci. Technol. 2011, 45 (15), 6491 – 6497. DOI: https://doi.org/10.1021/es200801r
- 275 T. H. Wiedemeier, H. S. Rifai, C. J. Newell, J. T. Wilson, Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface, John Wiley & Sons, New York 1999, 625.
- 276 A. Kraft, Platinum Met. Rev. 2008, 52 (3), 177 – 185. DOI: https://doi.org/10.1595/147106708x329273
- 277 E. J. La Motta, G. J. Rincón, J. Acosta, X. Chávez, Int. J. Eng. Res. Appl. 2017, 7 (1), 6 – 12. DOI: https://doi.org/10.9790/9622-0701050612
- 278 M. Rajab, C. Heim, T. Letzel, J. E. Drewes, B. Helmreich, Chemosphere 2015, 121, 47 – 53. DOI: https://doi.org/10.1016/j.chemosphere.2014.10.075
- 279 S. Ammar, R. Abdelhedi, C. Flox, C. Arias, E. Brillas, Environ. Chem. Lett. 2006, 4 (4), 229 – 233. DOI: https://doi.org/10.1007/s10311-006-0053-2
- 280 J. Saha, S. K. Gupta, Ionics 2017, 23 (7), 1903 – 1913. DOI: https://doi.org/10.1007/s11581-017-2022-0
- 281 A. M. Polcaro, A. Vacca, M. Mascia, S. Palmas, R. Pompei, S. Laconi, Electrochim. Acta 2007, 52 (7), 2595 – 2602. DOI: https://doi.org/10.1016/j.electacta.2006.09.015
- 282CONDIACELL® – Industrielle Abwasserbehandlung, CONDIAS GmbH, Itzehoe 2018. http://condias.de/?page_id=15
- 283 C. A. Martínez-Huitle, E. Brillas, Angew. Chem., Int. Ed. 2008, 47 (11), 1998 – 2005. DOI: https://doi.org/10.1002/anie.200703621
- 284 H. Wang, C. Hu, X. Hu, M. Yang, J. Qu, Water Res. 2012, 46 (4), 1070 – 1078. DOI: https://doi.org/10.1016/J.WATRES.2011.12.001
- 285 S. Chen, W. Hu, J. Hong, S. Sandoe, Mar. Pollut. Bull. 2016, 105 (1), 319 – 323. DOI: https://doi.org/10.1016/J.MARPOLBUL.2016.02.003
- 286 P. Valero, M. Verbel, J. Silva-Agredo, R. Mosteo, M. P. Ormad, R. A. Torres-Palma, J. Environ. Manage. 2017, 198 (1), 256 – 265. DOI: https://doi.org/10.1016/J.JENVMAN.2017.04.070
- 287 J. Moreno-Andrés, N. Ambauen, O. Vadstein, C. Hallé, A. Acevedo-Merino, E. Nebot, T. Meyn, Water Res. 2018, 140, 377 – 386. DOI: https://doi.org/10.1016/j.watres.2018.04.061
- 288 Y. Zhang, S. Zuo, Y. Zhang, M. Li, J. Cai, M. Zhou, Chem. Eng. J. 2018, 348, 485 – 493. DOI: https://doi.org/10.1016/j.cej.2018.04.123
- 289 E. Tsolaki, E. Diamadopoulos, J. Chem. Technol. Biotechnol. 2010, 85 (1), 19 – 32. DOI: https://doi.org/10.1002/jctb.2276
- 290De Nora BALPURE® Systems for Aquatic Invasive Species, Industrie De Nora S.p.A., Milan 2018. www.denora.com/products/seawater-systems/balpure.html (Accessed on May 24, 2018)
- 291Seawater Electrochlorination Package, Frames Flow Control & Safeguarding, BP Alphen aan den Rijn 2018. www.frames-group.com/getattachment/212bf895-2ae0-43d8-b30c-b16bae68e8ae/Product-Leaflet-Seawater-Electrochlorination.pdf.aspx?ext=.pdf
- 292 M. Gonsior, C. Mitchelmore, A. Heyes, M. Harir, S. D. Richardson, W. T. Petty, D. A. Wright, P. Schmitt-Kopplin, Environ. Sci. Technol. 2015, 49 (15), 9048 – 9055. DOI: https://doi.org/10.1021/acs.est.5b01474
- 293 C. A. Martínez-Huitle, B. Enric, Angew. Chem., Int. Ed. 2008, 47 (11), 1998 – 2005. DOI: https://doi.org/10.1002/anie.200703621