Emerging technologies for the management of type 2 diabetes mellitus
管理2型糖尿病的新兴技术
Nirali A. Shah
Division of Endocrinology, Diabetes and Bone Metabolism, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Search for more papers by this authorCorresponding Author
Carol J. Levy
Division of Endocrinology, Diabetes and Bone Metabolism, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Correspondence
Carol J. Levy, Division of Endocrinology, Diabetes and Metabolism, One Gustave L. Levy Place, Box 1055, New York, NY 10029.
Email: [email protected]
Search for more papers by this authorNirali A. Shah
Division of Endocrinology, Diabetes and Bone Metabolism, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Search for more papers by this authorCorresponding Author
Carol J. Levy
Division of Endocrinology, Diabetes and Bone Metabolism, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Correspondence
Carol J. Levy, Division of Endocrinology, Diabetes and Metabolism, One Gustave L. Levy Place, Box 1055, New York, NY 10029.
Email: [email protected]
Search for more papers by this authorAbstract
enDiabetes mellitus is a global health problem affecting 422 million people worldwide, of which 34.2 million live in the United States alone. Complications due to diabetes can lead to considerable morbidity and mortality related to both microvascular and macrovascular disease. While glycosylated hemoglobin testing is the standard test utilized to evaluate glycemic control, emerging targets like “time in range” and “glycemic variability” often provide more accurate assessments of glycemic fluctuations and have implications for diabetes complications and quality of life. Patients with diabetes face considerable burdens of self-care including frequent glucose monitoring, multiple insulin injections, dietary management, and the need to track daily activities, all of which lead to reduced adherence and psychological burnout. From the provider perspective, limited patient data and access to self-management tools lead to treatment inertia and a reduced ability to help patients achieve and maintain their glycemic goals. In the past few decades, there have been considerable advances in treatment-based technology and technological applications designed to help reduce patient burden and provide tools for better self-management. These advances make real-time clinical data available for clinicians to make necessary changes in treatment regimens. In this review, we discuss the latest emerging technologies available for the management of people with type 2 diabetes mellitus.
摘要
zh糖尿病是一个全球性的健康问题, 影响着全球4.22亿人, 其中仅美国就有3420万人。糖尿病引起的并发症可导致与微血管和大血管疾病相关的高发病率和死亡率。虽然糖化血红蛋白测试是用来评估血糖控制的标准测试, 但新兴的指标, 如“在范围内的时间”和“血糖变异性”, 往往能提供更准确的血糖波动评估, 并对糖尿病并发症和生活质量产生影响。糖尿病患者面临着相当大的自我护理负担, 包括频繁的血糖监测、多次胰岛素注射、饮食管理以及跟踪日常活动的需要, 所有这些都会导致依从性降低和心理倦怠。从提供者的角度来看, 有限的患者数据和自我管理工具的使用导致了治疗的惰性, 并降低了帮助患者实现和维持血糖目标的能动性。在过去的几十年里, 以治疗为基础的技术和应用取得了长足的进步, 旨在帮助减轻患者的负担, 并为更好的自我管理提供工具。这些进展使临床医生可以获得实时的临床数据, 以便对治疗方案进行必要的改变。在这篇综述中, 我们讨论了可用于2型糖尿病患者管理的新兴技术。
REFERENCES
- 1 Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA 2020; https://www.cdc.gov/diabetes/data/statistics-report/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fdiabetes%2Fdata%2Fstatistics%2Fstatistics-report.html. Acceesed January 20, 2021.
- 2 Association AD. Statistics About Diabetes. 2018; https://www.diabetes.org/resources/statistics/statistics-about-diabetes. Acceesed January 20, 2021.
- 3 American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018; 41(5): 917-928.
- 4 American Diabetes Association. 6. Glycemic targets: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020; 43(Suppl 1): S66-S76.
- 5Ali MK, Bullard KM, Saaddine JB, Cowie CC, Imperatore G, Gregg EW. Achievement of goals in U.S. diabetes care, 1999-2010. N Engl J Med. 2013; 368(17): 1613-1624.
- 6Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000; 321(7258): 405-412.
- 7Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012; 97(4): 1067-1072.
- 8Umpierrez GE, Kovatchev BP. Glycemic variability: how to measure and its clinical implication for type 2 diabetes. Am J Med Sci. 2018; 356(6): 518-527.
- 9Bailey TS, Walsh J, Stone JY. Emerging technologies for diabetes care. Diabetes Technol Ther. 2018; 20(S2): S278-S284.
- 10Hirakawa Y, Arima H, Zoungas S, et al. Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care. 2014; 37(8): 2359-2365.
- 11Di Flaviani A, Picconi F, Di Stefano P, et al. Impact of glycemic and blood pressure variability on surrogate measures of cardiovascular outcomes in type 2 diabetic patients. Diabetes Care. 2011; 34(7): 1605-1609.
- 12Lu J, Wang C, Shen Y, et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: a prospective cohort study. Diabetes Care. 2020; 44(2): 549-555.
- 13Nam S, Chesla C, Stotts NA, Kroon L, Janson SL. Barriers to diabetes management: patient and provider factors. Diabetes Res Clin Pract. 2011; 93(1): 1-9.
- 14Hsu WC. Consequences of delaying progression to optimal therapy in patients with type 2 diabetes not achieving glycemic goals. South Med J. 2009; 102(1): 67-76.
- 15Marcolino MS, Oliveira JAQ, D'Agostino M, Ribeiro AL, Alkmim MBM, Novillo-Ortiz D. The impact of mHealth interventions: systematic review of systematic reviews. JMIR Mhealth Uhealth. 2018; 6(1):e23.
- 16Martínez-Pérez B, de la Torre-Díez I, López-Coronado M. Mobile health applications for the most prevalent conditions by the World Health Organization: review and analysis. J Med Internet Res. 2013; 15(6):e120.
- 17 AADE. AADE7 self-care behaviors. Diabetes Educ. 2008; 34(3): 445-449.
- 18Laing BY, Mangione CM, Tseng CH, et al. Effectiveness of a smartphone application for weight loss compared with usual care in overweight primary care patients: a randomized, controlled trial. Ann Intern Med. 2014; 161(10 Suppl): S5-S12.
- 19Saslow LR, Summers C, Aikens JE, Unwin DJ. Outcomes of a digitally delivered low-carbohydrate type 2 diabetes self-management program: 1-year results of a single-arm longitudinal study. JMIR Diabetes. 2018; 3(3):e12.
- 20Fleming GA, Petrie JR, Bergenstal RM, Holl RW, Peters AL, Heinemann L. Diabetes Digital App Technology: Benefits, challenges, and recommendations. A consensus report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care. 2020; 43(1): 250-260.
- 21Cals C. Carbs & Cals; Type 2 Diabetes https://www.carbsandcals.com/diabetes/type-2-diabetes, 2020. Acceesed January 20, 2021.
- 22MyFitnessPal. MyFitenessPal. https://www.myfitnesspal.com/welcome/learn_more. Acceesed January 20, 2021.
- 23Program LC. Low Carb Program. https://www.lowcarbprogram.com/, 2020. Acceesed January 20, 2021.
- 24Kooiman TJM, de Groot M, Hoogenberg K, Krijnen WP, van der Schans CP, Kooy A. Self-tracking of physical activity in people with type 2 diabetes: a randomized controlled trial. Comput Inform Nurs. 2018; 36(7): 340-349.
- 25Demidowich AP, Lu K, Tamler R, Bloomgarden Z. An evaluation of diabetes self-management applications for Android smartphones. J Telemed Telecare. 2012; 18(4): 235-238.
- 26Gong E, Zhang Z, Jin X, et al. Quality, functionality, and features of chinese mobile apps for diabetes self-management: systematic search and evaluation of mobile apps. JMIR Mhealth Uhealth. 2020; 8(4):e14836.
- 27Debong F, Mayer H, Kober J. Real-world assessments of mySugr mobile health app. Diabetes Technol Ther. 2019; 21(S2): S235-s240.
- 28Klaff LJ, Brazg R, Hughes K, et al. Accuracy evaluation of contour next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting. Diabetes Technol Ther. 2015; 17(1): 8-15.
- 29Christiansen M, Greene C, Pardo S, et al. A new, wireless-enabled blood glucose monitoring system that links to a smart mobile device: accuracy and user performance evaluation. J Diabetes Sci Technol. 2017; 11(3): 567-573.
- 30Kim JM, Lee HJ, Kim KO, Won JC, Ko KS, Rhee BD. Clinical evaluation of onetouch diabetes management software system in patients with type 2 diabetes mellitus. Diabetes Metab J. 2016; 40(2): 129-139.
- 31Littmann K, Petersen ER, Pussinen C, et al. Evaluation of OneTouch Verio(®), a new blood glucose self-monitoring system for patients with diabetes. Scand J Clin Lab Invest. 2013; 73(4): 286-292.
- 32Downing J, Bollyky J, Schneider J. Use of a connected glucose meter and certified diabetes educator coaching to decrease the likelihood of abnormal blood glucose excursions: the livongo for diabetes program. J Med Internet Res. 2017; 19(7):e234.
- 33Bollyky JB, Bravata D, Yang J, Williamson M, Schneider J. Remote lifestyle coaching plus a connected glucose meter with certified diabetes educator support improves glucose and weight loss for people with type 2 diabetes. J Diabetes Res. 2018; 2018:3961730.
- 34Bollyky JB, Melton ST, Xu T, Painter SL, Knox B. The effect of a cellular-enabled glucose meter on glucose control for patients with diabetes: prospective pre-post study. JMIR Diabetes. 2019; 4(4):e14799.
- 35Osborn CY, van Ginkel JR, Rodbard D, et al. One Drop | Mobile: an evaluation of hemoglobin A1c improvement linked to app engagement. JMIR Diabetes. 2017; 2(2):e21.
- 36Osborn CY, van Ginkel JR, Marrero DG, Rodbard D, Huddleston B, Dachis J. One Drop | Mobile on iPhone and apple watch: an evaluation of HbA1c improvement associated with tracking self-care. JMIR Mhealth Uhealth. 2017; 5(11):e179.
- 37Kumar S, Moseson H, Uppal J, Juusola JL. A Diabetes Mobile App With In-App Coaching From a Certified Diabetes Educator Reduces A1C for Individuals With Type 2 Diabetes. Diabetes Educ. 2018; 44(3): 226-236.
- 38Osborn CY, Hirsch A, Sears LE, et al. One Drop app with an activity tracker for adults with type 1 diabetes: randomized controlled trial. JMIR Mhealth Uhealth. 2020; 8(9):e16745.
- 39Cox DJ, McCall A, Kovatchev B, Sarwat S, Ilag LL, Tan MH. Effects of Blood Glucose Rate of Changes on Perceived Mood and Cognitive Symptoms in Insulin-Treated Type 2 Diabetes. Diabetes Care. 2007; 30(8): 2001-2002.
- 40Rizzo MR, Marfella R, Barbieri M, et al. Relationships between daily acute glucose fluctuations and cognitive performance among aged type 2 diabetic patients. Diabetes Care. 2010; 33(10): 2169-2174.
- 41Zhou J, Jia WP, Ma XJ, et al. Relationship between blood glucose variability and microalbuminuria in type 2 diabetic patients with well-controlled glycosylated hemoglobin. Zhonghua Yi Xue Za Zhi. 2008; 88(42): 2977-2981.
- 42X-m C, Zhang Y, Shen X-p, et al. Correlation between glucose fluctuations and carotid intima-media thickness in type 2 diabetes. Diabetes Res Clin Pract. 2010; 90(1): 95-99.
- 43Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019; 42(8): 1593-1603.
- 44Shah VN, Laffel LM, Wadwa RP, Garg SK. Performance of a factory-calibrated real-time continuous glucose monitoring system utilizing an automated sensor applicator. Diabetes Technol Ther. 2018; 20(6): 428-433.
- 45Zhong Y, Arunachalam S, Agrawal P, Neemuchwala H, Cordero T, Kaufman F. Real-World Assessment of Sugar.IQ with Watson—A cognitive computing-based diabetes management solution. Diabetes. 2018; 67(Suppl 1):16-OR.
- 46Fokkert M, van Dijk P, Edens M, et al. Improved well-being and decreased disease burden after 1-year use of flash glucose monitoring (FLARE-NL4). BMJ Open Diab Res Care. 2019; 7(1):e000809.
- 47Christiansen MP, Klaff LJ, Brazg R, et al. A prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II. Diabetes Technol Ther. 2018; 20(3): 197-206.
- 48 ATTD. The official journal of ATTD advanced technologies & treatments for diabetes conference Madrid, Spain—February 19–22, 2020. Diabetes Technol Ther. 2020; 22(S1): A1-A250.
- 49Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017; 40(12): 1631-1640.
- 50Ehrhardt NM, Chellappa M, Walker MS, Fonda SJ, Vigersky RA. The effect of real-time continuous glucose monitoring on glycemic control in patients with type 2 diabetes mellitus. J Diabetes Sci Technol. 2011; 5(3): 668-675.
- 51Beck RW, Riddlesworth TD, Ruedy K, et al. Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections: a randomized trial. Ann Intern Med. 2017; 167(6): 365-374.
- 52Haak T, Hanaire H, Ajjan R, Hermanns N, Riveline JP, Rayman G. Flash glucose-sensing technology as a replacement for blood glucose monitoring for the management of insulin-treated type 2 diabetes: a multicenter, open-label randomized controlled trial. Diabetes Ther. 2017; 8(1): 55-73.
- 53 American Diabetes Association. 7. Diabetes technology: standards of medical care in diabetes—2020. Diabetes Care. 2020; 43(Suppl 1): S77-S88.
- 54Bao Y, Chen L, Chen L, et al. Chinese clinical guidelines for continuous glucose monitoring (2018 edition). Diabetes Metab Res Rev. 2019; 35(6):e3152.
- 55Davies M, Bain S, Charpentier G, et al. A randomized controlled, treat-to-target study evaluating the efficacy and safety of insulin glargine 300 U/mL (Gla-300) administered using either device-supported or routine titration in people with type 2 diabetes. J Diabetes Sci Technol. 2019; 13(5): 881-889.
- 56Quinn CC, Clough SS, Minor JM, Lender D, Okafor MC, Gruber-Baldini A. WellDoc mobile diabetes management randomized controlled trial: change in clinical and behavioral outcomes and patient and physician satisfaction. Diabetes Technol Ther. 2008; 10(3): 160-168.
- 57Quinn CC, Shardell MD, Terrin ML, Barr EA, Ballew SH, Gruber-Baldini AL. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care. 2011; 34(9): 1934-1942.
- 58Agarwal P, Mukerji G, Desveaux L, et al. Mobile App for improved self-management of type 2 diabetes: multicenter pragmatic randomized controlled trial. JMIR Mhealth Uhealth. 2019; 7(1):e10321.
- 59Bergenstal RM, Johnson M, Passi R, et al. Automated insulin dosing guidance to optimise insulin management in patients with type 2 diabetes: a multicentre, randomised controlled trial. Lancet. 2019; 393(10176): 1138-1148.
- 60Franc S, Hanaire H, Benhamou PY, et al. DIABEO system combining a mobile app software with and without telemonitoring versus standard care: a randomized controlled trial in diabetic patients poorly controlled with a Basal-Bolus insulin regimen. Diabetes Technol Ther. 2020; 22: 904-911.
- 61Lencioni C, Lupi R, Del Prato S. Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep. 2008; 8(3): 179-184.
- 62Garg SK, Rewers AH, Akturk HK. Ever-increasing insulin-requiring patients globally. Diabetes Technol Ther. 2018; 20(S2): S2-1-S2-4.
- 63Carver C. Insulin treatment and the problem of weight gain in type 2 diabetes. Diabetes Educ. 2006; 32(6): 910-917.
- 64Neumiller JJ, Odegard PS, Wysham CH. Update on insulin management in type 2 diabetes. Diabetes Spectrum. 2009; 22(2): 85-91.
10.2337/diaspect.22.2.85 Google Scholar
- 65Anderbro T, Amsberg S, Adamson U, et al. Fear of hypoglycaemia in adults with Type 1 diabetes. Diabetic Med. 2010; 27(10): 1151-1158.
- 66Cavanaugh K, Huizinga MM, Wallston KA, et al. Association of numeracy and diabetes control. Ann Intern Med. 2008; 148(10): 737-746.
- 67Gross TM, Kayne D, King A, Rother C, Juth S. A bolus calculator is an effective means of controlling postprandial glycemia in patients on insulin pump therapy. Diabetes Technol Ther. 2003; 5(3): 365-369.
- 68Ziegler R, Cavan DA, Cranston I, et al. Use of an insulin bolus advisor improves glycemic control in multiple daily insulin injection (MDI) therapy patients with suboptimal glycemic control: first results from the ABACUS trial. Diabetes Care. 2013; 36(11): 3613-3619.
- 69Klonoff DC, Kerr D. Smart pens will improve insulin therapy. J Diabetes Sci Technol. 2018; 12(3): 551-553.
- 70Adolfsson P, Hartvig NV, Kaas A, Møller JB, Hellman J. Increased time in range and fewer missed bolus injections after introduction of a smart connected insulin pen. Diabetes Technol Ther. 2020; 22(10): 709-718.
- 71Heinemann L, Schnell O, Gehr B, Schloot NC, Görgens SW, Görgen C. Digital diabetes management: a literature review of smart insulin pens. J Diabetes Sci Technol. 2021. https://doi.org/10.1177/1932296820983863. [Epub ahead of print].
10.1177/1932296820983863 Google Scholar
- 72Danne T, Forst T, Deinhard J, Rose L, Moennig E, Haupt A. No effect of insulin pen with memory function on glycemic control in a patient cohort with poorly controlled type 1 diabetes: a randomized open-label study. J Diabetes Sci Technol. 2012; 6(6): 1392-1397.
- 73Venekamp WJ, Kerr L, Dowsett SA, et al. Functionality and acceptability of a new electronic insulin injection pen with a memory feature. Curr Med Res Opin. 2006; 22(2): 315-325.
- 74Raskin P, Bode BW, Marks JB, et al. Continuous subcutaneous insulin infusion and multiple daily injection therapy are equally effective in type 2 diabetes: a randomized, parallel-group, 24-week study. Diabetes Care. 2003; 26(9): 2598-2603.
- 75Herman WH, Ilag LL, Johnson SL, et al. A clinical trial of continuous subcutaneous insulin infusion versus multiple daily injections in older adults with type 2 diabetes. Diabetes Care. 2005; 28(7): 1568-1573.
- 76Wainstein J, Metzger M, Boaz M, et al. Insulin pump therapy vs. multiple daily injections in obese Type 2 diabetic patients. Diabetic Med. 2005; 22(8): 1037-1046.
- 77Berthe E, Lireux B, Coffin C, et al. Effectiveness of intensive insulin therapy by multiple daily injections and continuous subcutaneous infusion: a comparison study in type 2 diabetes with conventional insulin regimen failure. Horm Metab Res. 2007; 39(3): 224-229.
- 78Reznik Y, Cohen O, Aronson R, et al. Insulin pump treatment compared with multiple daily injections for treatment of type 2 diabetes (OpT2mise): a randomised open-label controlled trial. Lancet. 2014; 384(9950): 1265-1272.
- 79Hirsch JD, Morello CM. Economic impact of and treatment options for type 2 diabetes. Am J Manag Care. 2017; 23(13 Suppl): S231-s240.
- 80Fonda SJ, Graham C, Munakata J, Powers JM, Price D, Vigersky RA. The cost-effectiveness of real-time continuous glucose monitoring (RT-CGM) in type 2 diabetes. J Diabetes Sci Technol. 2016; 10(4): 898-904.
- 81Hellmund R, Weitgasser R, Blissett D. Cost calculation for a flash glucose monitoring system for adults with type 2 diabetes mellitus using intensive insulin - a UK perspective. Eur Endocrinol. 2018; 14(2): 86-92.
- 82Roze S, Smith-Palmer J, Delbaere A, et al. Cost-effectiveness of continuous subcutaneous insulin infusion versus multiple daily injections in patients with poorly controlled type 2 diabetes in Finland. Diabetes Ther. 2019; 10(2): 563-574.
- 83Wahlqvist P, Warner J, Morlock R. Cost-effectiveness of simple insulin infusion devices compared to multiple daily injections in uncontrolled type 2 diabetics in the United States based on a simulation model. J Health Econ Outcomes Res. 2018; 6(1): 84-95.
- 84Jendle J, Ericsson Å, Gundgaard J, Møller JB, Valentine WJ, Hunt B. Smart insulin pens are associated with improved clinical outcomes at lower cost versus standard-of-care treatment of type 1 diabetes in Sweden: a cost-effectiveness analysis. Diabetes Ther. 2021; 12(1): 373-388.