Recent advances in processing and preservation of minimally processed fruits and vegetables: A review – Part 1: Fundamentals and chemical methods
Ana Cláudia Silveira Alexandre
Food Science Department, Federal University of Lavras, Lavras, Brazil
Contribution: Conceptualization, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorBianca Almada Ferreira Gomes
Food Science Department, Federal University of Lavras, Lavras, Brazil
Contribution: Conceptualization, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorGiulia Nayara Duarte
Agriculture Department, Federal University of Lavras, Lavras, Brazil
Contribution: Investigation, Writing - original draft
Search for more papers by this authorSamella Fabiane Piva
Food Science Department, Federal University of Lavras, Lavras, Brazil
Contribution: Investigation, Writing - original draft
Search for more papers by this authorStefânia Barros Zauza
Agriculture Department, Federal University of Lavras, Lavras, Brazil
Contribution: Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Eduardo Valério de Barros Vilas Boas
Food Science Department, Federal University of Lavras, Lavras, Brazil
Correspondence
Eduardo Valério de Barros Vilas Boas, Department of Food Science, Federal University of Lavras, P.O. Box 3037, Zip code: 37200-900, Lavras, Minas Gerais, Brazil.
Email: [email protected]
Contribution: Conceptualization, Project administration, Supervision, Writing - review & editing
Search for more papers by this authorAna Cláudia Silveira Alexandre
Food Science Department, Federal University of Lavras, Lavras, Brazil
Contribution: Conceptualization, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorBianca Almada Ferreira Gomes
Food Science Department, Federal University of Lavras, Lavras, Brazil
Contribution: Conceptualization, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorGiulia Nayara Duarte
Agriculture Department, Federal University of Lavras, Lavras, Brazil
Contribution: Investigation, Writing - original draft
Search for more papers by this authorSamella Fabiane Piva
Food Science Department, Federal University of Lavras, Lavras, Brazil
Contribution: Investigation, Writing - original draft
Search for more papers by this authorStefânia Barros Zauza
Agriculture Department, Federal University of Lavras, Lavras, Brazil
Contribution: Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Eduardo Valério de Barros Vilas Boas
Food Science Department, Federal University of Lavras, Lavras, Brazil
Correspondence
Eduardo Valério de Barros Vilas Boas, Department of Food Science, Federal University of Lavras, P.O. Box 3037, Zip code: 37200-900, Lavras, Minas Gerais, Brazil.
Email: [email protected]
Contribution: Conceptualization, Project administration, Supervision, Writing - review & editing
Search for more papers by this authorAbstract
The mechanical damage caused by minimal processing drastically reduces the shelf life of fruits and vegetables, making them more susceptible to microbial contamination, nutritional, and sensory changes. Maintaining the quality of minimally processed products during storage necessarily depends on the use of preservation technologies, whether applied through physical or chemical methods or their combination. In the first part of this review, some fundamentals of minimal processing steps are detailed, which include the implications on the respiratory metabolism, ethylene biosynthesis and action, appearance, texture, aroma, flavor, water loss, and microbiological safety of these products. Furthermore, the advantages, disadvantages, and applications of the main chemical preservation methods in minimally processed fruits and vegetables are explored. The challenge of this work was to provide the scientific foundation for food producers and processors to identify the most suitable and effective preservation method for a variety of minimally processed fruits and vegetables.
Novelty impact statement
- Preharvest factors have a significant impact on product quality and shelf life.
- QACs, hydrogen peroxide and ozone are potential alternatives to the use of chlorine.
- Potential applications of antibrowning and antisoftening agents were highlighted.
CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable - no new data generated, or the article describes entirely theoretical research.
REFERENCES
- Adam, A. M., Jeganathan, B., Vasanthan, T., & Roopesh, M. S. (2022). Dipping fresh-cut apples in citric acid before plasma-integrated low-pressure cooling improves Salmonella and polyphenol oxidase inactivation. Journal of the Science of Food and Agriculture, 102(8), 3425–3434. https://doi.org/10.1002/jsfa.11690
- Aguayo, E., Escalona, V. H., & Artes, F. (2008). Effect of hot water treatment and various calcium salts on quality of fresh-cut ‘Amarillo’ melon. Postharvest Biology and Technology, 47(3), 397–406. https://doi.org/10.1016/j.postharvbio.2007.08.001
- Aguayo, E., Gómez, E., Artés, F., Escalona, V. H., & Silveria, A. C. (2013). Hot water calcium dips to improve quality of fresh-cut watermelon. Acta Horticulturae, 1012, 1013–1019. https://doi.org/10.17660/ActaHortic.2013.1012.136
10.17660/ActaHortic.2013.1012.136 Google Scholar
- Aguayo, E., Requejo-Jackman, C., Stanley, R., & Woolf, A. (2015). Hot water treatment in combination with calcium ascorbate dips increases bioactive compounds and helps to maintain fresh-cut apple quality. Postharvest Biology and Technology, 110, 158–165. https://doi.org/10.1016/j.postharvbio.2015.07.001
- Alexandre, E. M. C., Brandão, T. R. S., & Silva, C. L. M. (2012). Assessment of the impact of hydrogen peroxide solutions on microbial loads and quality factors of red bell peppers, strawberries and watercress. Food Control, 27, 362–368. https://doi.org/10.1016/j.foodcont.2012.04.012
- Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2017). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180
- Ali, S., Khan, A. S., Anjum, M. A., Nawaz, A., Naz, S., Ejaz, S., & Hussain, S. (2020). Effect of postharvest oxalic acid application on enzymatic browning and quality of lotus (Nelumbo nucifera Gaertn.) root slices. Food Chemistry, 312, 126051. https://doi.org/10.1016/j.foodchem.2019.126051
- Amaro, A. L., Spadafora, N. D., Pereira, M. J., Dhorajiwala, R., Herbert, R. J., Müller, C. T., Rogers, H. J., & Pintado, M. (2018). Multitrait analysis of fresh-cut cantaloupe melon enables discrimination between storage times and temperatures and identifies potential markers for quality assessments. Food Chemistry, 241, 222–231. https://doi.org/10.1016/j.foodchem.2017.08.050
- Artes, F., Gomez, P., Aguayo, E., Escalona, V., & Artes-Hernandez, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51(3), 287–296. https://doi.org/10.1016/j.postharvbio.2008.10.003
- Asare, P. T., Greppi, A., Stettler, M., Schwab, C., Stevens, M. J., & Lacroix, C. (2018). Decontamination of minimally-processed fresh lettuce using reuterin produced by Lactobacillus reuteri. Frontiers in Microbiology, 9, 1421. https://doi.org/10.3389/fmicb.2018.01421
- Bablon, G., Bellamy, W. D., Billen, G., & Bourbigot, M.-M. (1991). Practical applications of ozone: Principles and case studies. In G. Langlais, D. A. Reckhow, & D. R. Brink (Eds.), Ozone in water treatment: application and engineering (pp. 133–316). Lewis Publishers.
- Balbinot Filho, C. A., & Borges, C. D. (2020). Effects of UV-C radiation on minimally processed lettuce and apple: a review. Brazilian Journal of Food Technology, 23, e2018321. https://doi.org/10.1590/1981-6723.32118
10.1590/1981-6723.32118 Google Scholar
- Banach, J. L., Van Bokhorst-van de Veen, H., Van Overbeek, L. S., Van der Zouwen, P. S., Van der Fels-Klerx, H. J., & Groot, M. N. N. (2017). The efficacy of chemical sanitizers on the reduction of Salmonella Typhimurium and Escherichia coli affected by bacterial cell history and water quality. Food Control, 81, 137–146. https://doi.org/10.1016/j.foodcont.2017.05.044
- Banach, J. L., van Overbeek, L. S., Groot, M. N. N., van der Zouwen, P. S., & van der Fels-Klerx, H. J. (2018). Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. International Journal of Food Microbiology, 269, 128–136. https://doi.org/10.1016/j.ijfoodmicro.2018.01.013
- Barba, F. J., Mariutti, L. R., Bragagnolo, N., Mercadante, A. Z., Barbosa-Canovas, G. V., & Orlien, V. (2017). Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends in Food Science & Technology, 67, 195–206. https://doi.org/10.1016/j.tifs.2017.07.006
- Bartolini, S., Pozzo, L., Venturi, F., Sanmartin, C., Taglieri, I., Macaluso, M., & Sodi, A. M. (2022). Apple peel extracts as preservation solution to maintain the quality of fresh-cut apples. European Journal of Horticultural Science, 87(1), 9. https://doi.org/10.17660/eJHS.2022/012
- Baselice, A., Colantuoni, F., Lass, D. A., Nardone, G., & Stasi, A. (2017). Trends in EU consumers' attitude towards fresh-cut fruit and vegetables. Food Quality and Preference, 59, 87–96. https://doi.org/10.1016/j.foodqual.2017.01.008
- Batista, C. F. T., da Silva, C. O., Melo, C. M. T., Tassi, E. M. M., & Pascoal, G. B. (2017). Nutritional and physicochemical changes of white cabbage (Brassica oleracea) after minimal processing and during storage. DEMETRA: Alimentação, Nutrição & Saúde, 12(1), 305–318. https://doi.org/10.12957/demetra.2017.22115
10.12957/demetra.2017.22115 Google Scholar
- Berbari, S. A. G., Silveira, N. F. A., & Oliveira, L. A. T. (2003). Avaliação do comportamento de pasta de alho durante o armazenamento (Allium sativum L.). Ciência e Tecnologia de Alimentos, 23(3), 468–472. https://doi.org/10.1590/S0101-20612003000300029
10.1590/S0101?20612003000300029 Google Scholar
- Bhat, T. A., Rather, A. H., Hussain, S. Z., Naseer, B., Qadri, T., & Nazir, N. (2021). Efficacy of ascorbic acid, citric acid, ethylenediaminetetraacetic acid, and 4-hexylresorcinol as inhibitors of enzymatic browning in osmo-dehydrated fresh cut kiwis. Journal of Food Measurement and Characterization, 15(5), 4354–4370. https://doi.org/10.1007/s11694-021-01017-2
- Cacciò, S. M., Chalmers, R. M., Dorny, P., & Robertson, L. J. (2018). Foodborne parasites: Outbreaks and outbreak investigations. A meeting report from the European network for foodborne parasites (Euro-FBP). Food and Waterborne Parasitology, 10, 1–5. https://doi.org/10.1016/j.fawpar.2018.01.001
- Carocho, M., Morales, P., & Ferreira, I. (2018). Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends in Food Science & Technology, 71, 107–120. https://doi.org/10.1016/j.tifs.2017.11.008
- Cerit, I., Pfaff, A., Ercal, N., & Demirkol, O. (2020). Postharvest application of thiol compounds affects surface browning and antioxidant activity of fresh-cut potatoes. Journal of Food Biochemistry, 44(10), e13378. https://doi.org/10.1111/jfbc.13378
- Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutos e hortaliças:fisiologia e manuseio ( 2nd ed.). UFLA.
- Corbo, M. R., Campaniello, D., Speranza, B., Bevilacqua, A., & Sinigaglia, M. (2015). Non-conventional tools to preserve and prolong the quality of minimally-processed fruits and vegetables. Coatings, 5(4), 931–961. https://doi.org/10.3390/coatings5040931
- Coroneo, V., Carraro, V., Marras, B., Marrucci, A., Succa, S., Meloni, B., Pinna, A., Angioni, A., Sanna, A., & Schintu, M. (2017). Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 34(12), 2111–2117. https://doi.org/10.1080/19440049.2017.1382723
- Coswosck, K. H. C., Giorgette, M. A., Lepaus, B. M., Da Silva, E. M. M., Sena, G. G. S., Azevedo, M. C. D. A., & De São José, J. F. B. (2021). Impact of alternative sanitizers on the physicochemical quality, chlorophyll content and bioactive compounds of fresh vegetables. Food Science and Technology, 41(2), 328–334. https://doi.org/10.1590/fst.02320
- da Cruz, M. R. G., Leite, Y., Marques, J. D., Pavelquesi, S. L. S., Oliveira, L. R. D., da Silva, I. C. R., & Orsi, D. C. (2019). Microbiological quality of minimally processed vegetables commercialized in Brasilia, DF, Brazil. Food Science and Technology, 39, 498–503. https://doi.org/10.1590/fst.16018
- Davidson, P. M., Critzer, F. J., & Taylor, T. M. (2013). Naturally occurring antimicrobials for minimally processed foods. Annual Review of Food Science and Technology, 4, 163–190. https://doi.org/10.1146/annurev-food-030212-182535
- De Corato, U. (2019). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60(6), 940–975. https://doi.org/10.1080/10408398.2018.1553025
- de Mendonça, L. P., de Melo, E. C. C., Freire, B. C. F., Barbosa, T. N., Bezerra, A. C. D. S., & de Paiva Soares, K. M. (2020). Microorganisms, parasites, and nonbiological contaminants in minimally processed fruit salads sold by street vendors. Research, Society and Development, 9(8), e19985234. https://doi.org/10.33448/rsd-v9i8.5234
10.33448/rsd?v9i8.5234 Google Scholar
- de Sousa, A. E. D., Fonseca, K. S., Gomes, W. K. D., da Silva, A. P. M., Silva, E. D., & Puschmann, R. (2017). Control of browning of minimally processed mangoes subjected to ultraviolet radiation pulses. Journal of Food Science and Technology, 54(1), 253–259. https://doi.org/10.1007/s13197-016-2457-8
- Denoya, G. I., Vaudagna, S. R., Chamorro, V. C., Godoy, M. F., Budde, C. O., & Polenta, G. A. (2017). Suitability of different varieties of peaches for producing minimally processed peaches preserved by high hydrostatic pressure and selection of process parameters. LWT-Food Science and Technology, 78, 367–372. https://doi.org/10.1016/j.lwt.2017.01.006
- Denoya, G. I., Vaudagna, S. R., & Polenta, G. (2015). Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT-Food Science and Technology, 62(1), 801–806. https://doi.org/10.1016/j.lwt.2014.09.036
- Egea, M. B., Lemes, A. C., Filho, J. G. O., Takeuchi, K. P., & Danesi, E. D. G. (2018). Physicochemical, microbiological and sensory evaluation of heart of palm minimally processed by combined methods. Uniciências, 22, 2–6. https://doi.org/10.17921/1415-5141.2018v22n3Espp2-6
10.17921/1415?5141.2018v22n3Espp2?6 Google Scholar
- Ephrem, E., Najjar, A., Charcosset, C., & Greige-Gerges, H. (2018). Encapsulation of natural active compounds, enzymes, and probiotics for fruit juice fortification, preservation, and processing: An overview. Journal of Functional Foods, 48, 65–84. https://doi.org/10.1016/j.jff.2018.06.021
- Falagan, N., Artes, F., & Aguayo, E. (2016). Natural additives to preserve quality and improve nutritional value of fresh-cut nectarine. Food Science and Technology International, 22(5), 429–439. https://doi.org/10.1177/1082013215621816
- Fasake, V., Dash, S. K., Dhalsamant, K., Sahoo, N. R., & Pal, U. S. (2021). Effect of ozone and antimicrobial treatments on the shelf life of cauliflower under modified atmosphere packaging. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-021-05326-8
- Fatibello-Filho, O., & Vieira, I. C. (2002). Analytical use of vegetal tissue and crude extract as enzymatic source. Química Nova, 25(3), 455–464. https://doi.org/10.1590/S0100-40422002000300019
- Feliziani, E., Lichter, A., Smilanick, J. L., & Ippolito, A. (2016). Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology, 122, 53–69. https://doi.org/10.1016/j.postharvbio.2016.04.016
- Foegeding, P. M., & Busta, F. F. (1991). Chemical food preservatives. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (pp. 802–832). Lea & Febiger.
- Francis, G. A., Thomas, C., & O'Beirne, D. (1999). The microbiological safety of minimally processed vegetables. International Journal of Food Science and Technology, 34(1), 1–22. https://doi.org/10.1046/j.1365-2621.1999.00253.x
- Gallotta, A., Allegra, A., Inglese, P., & Sortino, G. (2018). Fresh-cut storage of fruit and fresh-cuts affects the behaviour of minimally processed Big Bang nectarines (Prunus persica L. Batsch) during shelf life. Food Packaging and Shelf Life, 15, 62–68. https://doi.org/10.1016/j.fpsl.2017.11.004
- Gastelum-Estrada, A., Hurtado-Romero, A., Santacruz, A., Cisneros-Zevallos, L., & Jacobo-Velazquez, D. A. (2020). Sanitizing after fresh-cutting carrots reduces the wound-induced accumulation of phenolic antioxidants compared to sanitizing before fresh-cutting. Journal of the Science of Food and Agriculture, 100(13), 4995–4998. https://doi.org/10.1002/jsfa.10555
- Glowacz, M., & Rees, D. (2016). Exposure to ozone reduces postharvest quality loss in red and green chilli peppers. Food Chemistry, 210, 305–310. https://doi.org/10.1016/j.foodchem.2016.04.119
- Gonzalez-Aguilar, G. A., Ayala-Zavala, J. F., Olivas, G. I., de la Rosa, L. A., & Alvarez-Parrilla, E. (2010). Preserving quality of fresh-cut products using safe technologies. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit-Journal of Consumer Protection and Food Safety, 5(1), 65–72. https://doi.org/10.1007/s00003-009-0315-6
- Gouda, M. H. B., Zhang, C. J., Peng, S. J., Kong, X. X., Chen, Y. R., Li, H., … Yu, L. J. (2021). Combination of sodium alginate-based coating with L-cysteine and citric acid extends the shelf-life of fresh-cut lotus root slices by inhibiting browning and microbial growth. Postharvest Biology and Technology, 175, 11. https://doi.org/10.1016/j.postharvbio.2021.111502
- Graca, A., Santo, D., Pires-Cabral, P., & Quintas, C. (2020). The effect of UV-C and electrolyzed water on yeasts on fresh-cut apple at 4 degrees C. Journal of Food Engineering, 282, 110034. https://doi.org/10.1016/j.jfoodeng.2020.110034
- Gross, K. C., Wang, C. Y., & Saltveit, M. E. (2016). The commercial storage of fruits, vegetables, and florist and nursery stocks. United States Department of Agriculture, Agricultural Research Service.
- Guan, W., Fan, X., & Yan, R. (2013). Effect of combination of ultraviolet light and hydrogen peroxide on inactivation of Escherichia coli O157: H7, native microbial loads, and quality of button mushrooms. Food Control, 34(2), 554–559. https://doi.org/10.1016/j.foodcont.2013.05.027
- Guo, Y. B., Li, M. J., Han, H. C., & Cai, J. P. (2016). Salmonella enterica serovar Choleraesuis on fresh-cut cucumber slices after reduction treatments. Food Control, 70, 20–25. https://doi.org/10.1016/j.foodcont.2016.05.030
- Han, Q., Gao, H. Y., Chen, H. J., Fang, X. J., & Wu, W. J. (2017). Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits. Food Chemistry, 221, 1947–1953. https://doi.org/10.1016/j.foodchem.2016.11.152
- Hasheminejad, N., & Khodaiyan, F. (2020). The effect of clove essential oil loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chemistry, 309, 10. https://doi.org/10.1016/j.foodchem.2019.125520
- Hernandez, A., Perez-Nevado, F., Ruiz-Moyano, S., Serradilla, M. J., Villalobos, M. C., Martin, A., & Cordoba, M. G. (2018). Spoilage yeasts: What are the sources of contamination of foods and beverages? International Journal of Food Microbiology, 286, 98–110. https://doi.org/10.1016/j.ijfoodmicro.2018.07.031
- Hoppu, U., Puputti, S., & Sandell, M. (2020). Factors related to sensory properties and consumer acceptance of vegetables. Critical Reviews in Food Science and Nutrition, 11, 1751–1761. https://doi.org/10.1080/10408398.2020.1767034
- Huang, Y. X., Ye, M., & Chen, H. Q. (2012). Efficacy of washing with hydrogen peroxide followed by aerosolized antimicrobials as a novel sanitizing process to inactivate Escherichia coli O157:H7 on baby spinach. International Journal of Food Microbiology, 153(3), 306–313. https://doi.org/10.1016/j.ijfoodmicro.2011.11.018
- Iglesias, M. B., Lopez, M. L., Echeverria, G., Vinas, I., Zudaire, L., & Abadias, M. (2018). Evaluation of biocontrol capacity of Pseudomonas graminis CPA-7 against foodborne pathogens on fresh-cut pear and its effect on fruit volatile compounds. Food Microbiology, 76, 226–236. https://doi.org/10.1016/j.fm.2018.04.007
- Imamura, K. B. (2017). Microbiological quality of fresh-cut kale (Brassica oleracea L.) marketed in a supermarket in the city of Marília-SP. RBAC, 49(4), 390–395. https://doi.org/10.21877/2448-3877.201700563
10.21877/2448?3877.201700563 Google Scholar
- Ishizaki, K., Shinriki, N., Ikehata, A., & Ueda, T. (1981). Degradation of nucleic acids with ozone. I. Degradation of nucleobases, ribonucleosides, and ribonucleoside—5′Monophosphates. Chemical & Pharmaceutical Bulletin, 29, 868–872. https://doi.org/10.1248/cpb.29.868
- James, A., & Zikankuba, V. (2017). Postharvest management of fruits and vegetable: A potential for reducing poverty, hidden hunger and malnutrition in sub-Sahara Africa. Cogent Food & Agriculture, 3(1), 13. https://doi.org/10.1080/23311932.2017.1312052
- Jesus, M. M. S., Carnelossi, G. M. A., Santos, S. F., Narain, N., & Castro, A. A. (2008). Inibição do escurecimento enzimático de quiabo minimamente processado. Revista Ciência Agronômica, 39(4), 524–530 https://www.researchgate.net/publication/279636619_Inibicao_do_escurecimento_enzimatico_de_quiabo_minimamente_processado
- Jiang, Z. D., Zheng, H., Mantri, N., Qi, Z. C., Zhang, X. D., Hou, Z. N., … Liang, Z. S. (2016). Prediction of relationship between surface area, temperature, storage time and ascorbic acid retention of fresh-cut pineapple using adaptive neuro-fuzzy inference system (ANFIS). Postharvest Biology and Technology, 113, 1–7. https://doi.org/10.1016/j.postharvbio.2015.10.014
- Jideani, A. I. O., Anyasi, T. A., Mchau, G. R. A., Udoro, E. O., & Onipe, O. O. (2017). Processing and preservation of fresh-cut fruit and vegetable products. In Postharvest handling (Vol. 3). IntechOpen. https://doi.org/10.5772/intechopen.69763
10.5772/intechopen.69763 Google Scholar
- Jin, T. Z., Chen, W. X., Gurtler, J. B., & Fan, X. T. (2020). Effectiveness of edible coatings to inhibit browning and inactivate foodborne pathogens on fresh-cut apples. Journal of Food Safety, 40(4), e12802. https://doi.org/10.1111/jfs.12802
- Jung, E., Carvalho, J., & de Souza, A. G. (2018). Conservação de couve minimamente processada tratada com ácido ascórbico. Revista Evidência, 18(2), 147–160. https://publicacoes.ifc.edu.br/index.php/micti/article/view/850/824
- Kader, A. (1986). Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technology (USA).
- Kang, J. H., Park, S. J., Park, J. B., & Song, K. B. (2019). Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chemistry, 271, 122–128. https://doi.org/10.1016/j.foodchem.2018.07.203
- Kang, J. H., & Song, K. B. (2018). Inhibitory effect of plant essential oil nanoemulsions against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium on red mustard leaves. Innovative Food Science & Emerging Technologies, 45, 447–454. https://doi.org/10.1016/j.ifset.2017.09.019
- Katariya, P., Arya, S. S., & Pandit, A. B. (2020). Novel, non-thermal hydrodynamic cavitation of orange juice: Effects on physical properties and stability of bioactive compounds. Innovative Food Science & Emerging Technologies, 62(12), 102364. https://doi.org/10.1016/j.ifset.2020.102364
- Kays, S. J. (1991). Metabolic processes in harvested products. In Postharvest physiology of perishable plant products (pp. 75–142). Springer US.
10.1007/978-1-4684-8255-3_3 Google Scholar
- Khadre, M. A., Yousef, A. E., & Kim, J. G. (2001). Microbiological aspects of ozone applications in food: A review. Journal of Food Science, 66(9), 1242–1252. https://doi.org/10.1111/j.1365-2621.2001.tb15196.x
- Kim, J. G., Yousef, A. E., & Dave, S. (1999). Application of ozone for enhancing the microbiological safety and quality of foods: A review. Journal of Food Protection, 62(9), 1071–1087. https://doi.org/10.4315/0362-028x-62.9.1071
- Klein, B., King, D., & Grossman, S. (1985). Cooxidation reations of lipoxygenase in plant systems. Advanced in free radical biology and medicine, 1, 309–343. https://doi.org/10.1016/8755-9668(85)90011-0
- Langer, S. E., Marina, M., Burgos, J. L., Martínez, G. A., Civello, P. M., & Villarreal, N. M. (2019). Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch). Journal of the Science of Food and Agriculture, 99(8), 4003–4010. https://doi.org/10.1002/jsfa.9626
- Leneveu-Jenvrin, C., Charles, F., Barba, F. J., & Remize, F. (2019). Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Critical Reviews in Food Science and Nutrition, 19, 2837–2855. https://doi.org/10.1080/10408398.2019.1664979
- Li, Y., & Wu, C. (2013). Enhanced inactivation of Salmonella Typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide. Food Research International, 54, 1553–1559. https://doi.org/10.1016/j.foodres.2013.09.012
- Liu, C., Ma, T., Hu, W., Tian, M., & Sun, L. (2016). Effects of aqueous ozone treatments on microbial load reduction and shelf life extension of fresh-cut apple. International Journal of Food Science & Technology, 51, 1099–1109. https://doi.org/10.1111/ijfs.13078
- Lopez, L., Romero, J., & Duarte, F. (2003). Microbiological quality and effect of washing and disinfection of pre-cut Chilean vegetables. Archivos Latinoamericanos de Nutricion, 53(4), 383–388.
- Loredana, L., Francesca, M., Florinda, F., Filomena, N., Paola, O., & Donatella, A. (2021). Effect of argon-enriched modified atmosphere on the over quality and bioactive compounds of ready-to-use broccoli rabe (Brassica rapa sylvestris L. var. esculenta) during the storage. Food Science and Technology International. https://doi.org/10.1177/10820132211062696
- Main, G. L., Morris, J. R., & Wehunt, E. J. (1986). Effect of preprocessing treatments on the firmness and quality characteristics of whole and sliced strawberries after freezing and thermal-processing. Journal of Food Science, 51(2), 391–394. https://doi.org/10.1111/j.1365-2621.1986.tb11138.x
- Malka, S. K., & Park, M. H. (2022). Fresh produce safety and quality: Chlorine dioxide's role. Frontiers in Plant Science, 12, 775629. https://doi.org/10.3389/fpls.2021.775629
- Mannozzi, C., Glicerina, V., Tylewicz, U., Castagnini, J. M., Canali, G., Dalla Rosa, M., & Romani, S. (2021). Influence of two different coating application methods on the maintenance of the nutritional quality of fresh-cut melon during storage. Applied Sciences-Basel, 11(18), 8510. https://doi.org/10.3390/app11188510
- Marin, A., Baldwin, E. A., Bai, J. H., Wood, D., Ference, C., Sun, X. X., … Plotto, A. (2021). Edible coatings as carriers of antibrowning compounds to maintain appealing appearance of fresh-cut mango. HortTechnology, 31(1), 27–35. https://doi.org/10.21273/horttech04687-20
- Marshall, M. R., Kim, J., & Wei, C. (2000). Enzymatic browning in fruits, vegetables and seafoods. FAO.
- Mohan, N. M., Zorgani, A., Earley, L., Chauhan, S., Trajkovic, S., Savage, J., & Martins, M. (2021). Preservatives from food-for food: Pea protein hydrolysate as a novel bio-preservative against Escherichia coli O157:H7 on a lettuce leaf. Food Science & Nutrition, 9(11), 5946–5958. https://doi.org/10.1002/fsn3.2489
- Monteiro, C. A., Cannon, G., Levy, R., Moubarac, J., Jaime, P., Martins, A. P., Canella, D., Louzada, M., & Parra, D. (2016). NOVA. The star shines bright. Food classification. Public health. World Nutrition, 7(1–3), 28–38 https://worldnutritionjournal.org/index.php/wn/article/view/5/4
- Moon, K. M., Kwon, E. B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), 2754. https://doi.org/10.3390/molecules25122754
- Moreira, M. R., Alvarez, M. V., Martin-Belloso, O., & Soliva-Fortuny, R. (2017). Effects of pulsed light treatments and pectin edible coatings on the quality of fresh-cut apples: a hurdle technology approach. Journal of the Science of Food and Agriculture, 97(1), 261–268. https://doi.org/10.1002/jsfa.7723
- Mritunjay, S. K., & Kumar, V. (2017). A study on prevalence of microbial contamination on the surface of raw salad vegetables. 3 Biotech, 7(9), 13. https://doi.org/10.1007/s13205-016-0585-5
- Nascimento, H. M., Delgado, D. B., & Barbaric, I. F. (2010). IF Avaliação da aplicação de agentes sanitizantes como controladores do crescimento microbiano na indústria alimentícia. Revista Ceciliana, 2(1), 11–13.
- Naser, F., Rabiei, V., Razavi, F., & Khademi, O. (2018). Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Scientia Horticulturae, 233, 114–123. https://doi.org/10.1016/j.scienta.2018.01.036
- Negrillo, S. L. C., Castillo-Israel, K. A. T., Gandia, J. B. L., Absulio, W. L., & Serrano, E. P. (2018). Physiological and physical responses of packaged minimally processed Pinakbet vegetables to 1-methylcyclopropene (1-MCP) pre-cutting treatment. International Food Research Journal, 25(4), 1403–1409.
- Nhleko, Z. V., Caleb, O. J., Ngcobo, M. E. K., Mafeo, T. P., & Mphahlele, R. R. (2022). Investigating the impacts of harvest stages, citric acid and calcium lactate treatments on changes in quality attributes and natural microbiota of minimally processed litchi during storage. Journal of Food Processing and Preservation., 46, e16492. https://doi.org/10.1111/jfpp.16492
- Nuevo, P. A., Resorez, J. M., Maunahan, M. V., & Masilungan, G. D. (2020). Control of browning in fresh-cut eggplant (Solanum melongena L.) using different anti-browning agents. Philippine Journal of Crop Science, 45(1), 62–67.
- O'Donnell, C., Tiwari, B. K., Cullen, P. J., & Rice, R. G. (2012). Ozone in food processing ( 1st ed.). Wiley-Blackwell.
10.1002/9781118307472 Google Scholar
- Ohashi, T. L., Foukaraki, S., Corea, D. S., Fereira, M. D., & Tery, L. (2016). Influence of 1-methylcyclopropene on the biochemical response and ripening of ‘Solo’ papayas. Revista Brasileira de Fruticultura, 38(2), e-791. https://doi.org/10.1590/0100-29452016791
- Olmez, H., & Akbas, M. Y. (2009). Optimization of ozone treatment of fresh-cut green leaf lettuce. Journal of Food Engineering, 90(4), 487–494. https://doi.org/10.1016/j.jfoodeng.2008.07.026
- Olmez, H., & Kretzschmar, U. (2009). Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT-Food Science and Technology, 42(3), 686–693. https://doi.org/10.1016/j.lwt.2008.08.001
- Pablos, C., Romero, A., de Diego, A., Vargas, C., Bascon, I., Perez-Rodriguez, F., & Marugan, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. International Journal of Food Microbiology, 285, 92–97. https://doi.org/10.1016/j.ijfoodmicro.2018.07.029
- Padrón-Mederos, M., Rodriguez-Galdon, B., Diaz-Romero, C., Lobo-Rodrigo, M. G., & Rodriguez-Rodriguez, E. M. (2020). Quality evaluation of minimally fresh-cut processed pineapples. LWT-Food Science and Technology, 129, 109607. https://doi.org/10.1016/j.lwt.2020.109607
- Palharini, M. C. D. A., Santos, C. A. D. J. P., Fileti, M. D. S., Simionato, E. M. R. S., & Sasaki, F. F. C. (2017). Hydrogen peroxide on fresh cut snap bean pathogens controland enzymatic browning. Comunicata Scientiae, 8(1), 69–79. https://doi.org/10.14295/CS.v8i1.1429
- Park, J. B., Kang, J. H., & Song, K. B. (2018a). Combined treatment of cinnamon bark oil emulsion washing and ultraviolet-C irradiation improves microbial safety of fresh-cut red chard. LWT-Food Science and Technology, 93, 109–115. https://doi.org/10.1016/j.lwt.2018.03.035
- Park, J. B., Kang, J. H., & Song, K. B. (2018b). Geranium essential oil emulsion containing benzalkonium chloride as a wash solution on fresh-cut vegetables. Food and Bioprocess Technology, 11(12), 2164–2171. https://doi.org/10.1007/s11947-018-2177-3
- Park, J. B., Kang, J. H., & Song, K. B. (2018c). Improving the microbial safety of fresh-cut endive with a combined treatment of cinnamon leaf oil emulsion containing cationic surfactants and ultrasound. Journal of Microbiology and Biotechnology, 28(4), 503–509. https://doi.org/10.4014/jmb.1711.11018
- Passos, L. P., de Souza Miranda, A. L., Marques, D. R. P., & de Oliveira, I. R. N. (2017). Microbiological aspects of carries minimally processed and stored in different under-cooling packs. The Journal of Engineering and Exact Sciences, 3(6), 829–834. https://doi.org/10.18540/jcecvl3iss6pp0829-0834
10.18540/jcecvl3iss6pp0829?0834 Google Scholar
- Paula, N. D., Boas, E., Rodrigues, L. J., Carvalho, R. A., & Piccoli, R. H. (2009). Quality of fresh-cut produce commercialized on supermarket shelves in the cities of Lavras-MG, Brasília-DF, and São Paulo-SP. Ciência e agrotecnologia, 33(1), 219–227. https://doi.org/10.1590/S1413-70542009000100031
- Pellegrini, M., Rossi, C., Palmieri, S., Maggio, F., Chaves-Lopez, C., Lo Sterzo, C., & Serio, A. (2020). Salmonella enterica control in stick carrots through incorporation of coriander seeds essential oil in sustainable washing treatments. Frontiers in Sustainable Food Systems, 4(9), 14. https://doi.org/10.3389/fsufs.2020.00014
10.3389/fsufs.2020.00014 Google Scholar
- Phanumong, P., Kim, S. M., Sangsuwan, J., Leksawasdi, N., & Rattanapanone, N. (2019). Influence of calcium salts on quality and microstructure of minimally-processed litchi fruit. Chiang Mai Journal of Science, 46(1), 46–61.
- Piscopo, A., Zappia, A., Princi, M. P., De Bruno, A., Araniti, F., Antonio, L., … Poiana, M. (2019). Quality of shredded carrots minimally processed by different dipping solutions. Journal of Food Science and Technology, 56(5), 2584–2593. https://doi.org/10.1007/s13197-019-03741-6
- Prakash, A., Baskaran, R., Paramasivam, N., & Vadivel, V. (2018). Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International, 111, 509–523. https://doi.org/10.1016/j.foodres.2018.05.066
- Prakash, A., Baskaran, R., & Vadivel, V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT-Food Science and Technology, 118, 108851. https://doi.org/10.1016/j.lwt.2019.108851
- Putnik, P., Roohinejad, S., Greiner, R., Granato, D., Bekhit, A. E.-D. A., & Bursać Kovačević, D. (2017). Prediction and modeling of microbial growth in minimally processed fresh-cut apples packaged in a modified atmosphere: A review. Food Control, 80, 411–419. https://doi.org/10.1016/j.foodcont.2017.05.018
- Qadri, O. S., Yousuf, B., & Srivastava, A. K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food & Agriculture, 1(1), 112–160. https://doi.org/10.1080/23311932.2015.1121606
10.1080/23311932.2015.1121606 Google Scholar
- Radi, M., Akhavan-Darabi, S., Akhavan, H. R., & Amiri, S. (2018). The use of orange peel essential oil microemulsion and nanoemulsion in pectin-based coating to extend the shelf life of fresh-cut orange. Journal of Food Processing and Preservation, 42(2), e13441. https://doi.org/10.1111/jfpp.13441
- Ramos, B., Miller, F. A., Brandao, T. R. S., Teixeira, P., & Silva, C. L. M. (2013). Fresh fruits and vegetables-An overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies, 20, 1–15. https://doi.org/10.1016/j.ifset.2013.07.002
- Rebeaud, S. G., & Gasser, F. (2015). Fruit quality as affected by 1-MCP treatment and DCA storage—A comparison of the two methods. European Journal of Horticultural Science, 80(1), 7–24. https://doi.org/10.17660/eJHS.2015/80.1.3
- Ribeiro, J. A., Seifert, M., Vinholes, J., Rombaldi, C. V., Nora, L., & Cantillano, R. F. F. (2019). Erythorbic acid and sodium erythorbate effectively prevent pulp browning of minimally processed ‘royal gala’ apples. Italian Journal of Food Science, 31(3), 573–590. https://doi.org/10.1007/s11694-020-00494-1
- Rodriguez-Arzuaga, M., Salsi, M. S., & Piagentini, A. M. (2020). Storage quality of fresh-cut apples treated with yerba mate (Ilex paraguariensis). Journal of Food Science and Technology-Mysore. https://doi.org/10.1007/s13197-020-04528-w
10.1007/s13197?020?04528?w Google Scholar
- Ru, Q. M., Hu, Q., Dai, C. E., Zhang, X. B., & Wang, Y. (2022). Formulation of Laurus nobilis essential oil nanoemulsion system and its application in fresh-cut muskmelons. Coatings, 12(2), 11. https://doi.org/10.3390/coatings12020159
- Saba, M. K., & Sogvar, O. B. (2016). Combination of carboxymethyl cellulose-based coatings with calcium and ascorbic acid impacts in browning and quality of fresh-cut apples. LWT-Food Science and Technology, 66, 165–171. https://doi.org/10.1016/j.lwt.2015.10.022
- Salemi, B., Sedaghat, N., Varidi, M. J., Mousavi, S. M., & Yazdi, F. T. (2021). The combined impact of calcium lactate with cysteine pretreatment and perforation-mediated modified atmosphere packaging on quality preservation of fresh-cut ‘Romaine’ lettuce. Journal of Food Science, 86(3), 715–723. https://doi.org/10.1111/1750-3841.15619
- Saltveit, M. E. (2018). Anaerobic exposure before or after wounding reduces the production of wound-induced phenolic compounds in fresh-cut lettuce. Postharvest Biology and Technology, 135, 77–82. https://doi.org/10.1016/j.postharvbio.2017.08.022
- Samadi, N., Abadian, N., Bakhtiari, D., Fazeli, M. R., & Jamalifar, H. (2009). Efficacy of detergents and fresh produce disinfectants against microorganisms associated with mixed raw vegetables. Journal of Food Protection, 72(7), 1486–1490. https://doi.org/10.4315/0362-028x-72.7.1486
- Sanchis, E., Ghidelli, C., Rojas-Argudo, C., Perez-Gago, M. B., & Mateos, M. (2018). Influence of controlled atmospheres and antioxidants on enzymatic browning and shelf life of fresh-cut persimmon ‘Rojo Brillante’. II International Conference on Quality Management of Fresh Cut Produce: Convenience Food for a Tasteful Life, 1209, 71–77. https://doi.org/10.17660/ActaHortic.2018.1209.11
10.17660/ActaHortic.2018.1209.11 Google Scholar
- Santos, J. S., & Oliveira, M. B. P. P. (2012). Revisão: alimentos frescos minimamente processados embalados em atmosfera modificada. Brazilian Journal of Food Technology, 56(1), 1–14. https://doi.org/10.1590/S1981-67232012000100001
10.1590/S1981?67232012000100001 Google Scholar
- Santos Junior, A. M. D., Maluf, W. R., Faria, M. V., Lima, L. C. D. O., Campos, K. P. D., Lima, H. C. D., & Araújo, F. M. (2003). Post-harvest behaviour of chemical, biochemical and physical aspects of tomato fruits heterozygous in alcobaça and ripening inhibitor loci. Ciência e Agrotecnologia, 27(4), 749–757. https://doi.org/10.1590/S1413-70542003000400002
- Sapers, G. M., & Miller, R. L. (1998). Browning inhibition in fresh-cut pears. Journal of Food Science, 63(2), 342–346.
- Sapers, G. M., & Simmons, G. F. (1998). Hydrogen peroxide disinfection of minimally processed fruits and vegetables. Food Technology, 52(2), 48–52.
- Scott, D. B. M., & Lesher, E. C. (1963). Effect of ozone on survival and permeability of Escherichia coli. Journal Bacteriological, 85(3), 567–576. https://doi.org/10.1128/jb.85.3.567-576.1963
- Sehrawat, R., Khan, K. A., Goyal, M. R., & Paul, P. K. (2018). Technological interventions in the processing of fruits and vegetables. CRC Press.
10.1201/9781315205762 Google Scholar
- Shaban, S. M., Saied, A., Tawfik, S. M., Abd-Elaal, A., & Aiad, I. (2013). Corrosion inhibition and biocidal effect of some cationic surfactants based on Schiff base. Journal of Industrial and Engineering Chemistry, 19(6), 2004–2009. https://doi.org/10.1016/j.jiec.2013.03.013
- Silva, S. B., Silva, S. B. D., Luvielmo, M. M., & Geyer, M. C. (2011). Potential use of ozone in the food processing. Ciências Agrárias, 32, 659–682. https://doi.org/10.5433/1679-0359.2011v32n2p659
- Simão, R., & Rodríguez, T. D. M. (2009). Utilização do ozônio no tratamento pós-colheita do tomate (Lycopersicon esculentum Mill). Revista de Estudos Sociais, 11(22), 115–124 https://periodicoscientificos.ufmt.br/ojs/index.php/res/article/view/246
- Simões, A. D. N., de Almeida, S. L., Borges, C. V., Fonseca, K. S., Barros Júnior, A. P., de Albuquerque, J. R. T., Corrêa, C. R., Minatel, I. O., Morais, M. A. D. S., Diamante, M. S., & Lima, G. P. P. (2020). Delaying the harvest induces bioactive compounds and maintains the quality of sweet potatoes. Journal of Food Biochemistry, 44, e13322. https://doi.org/10.1111/jfbc.13322
- Siroli, L., Patrignani, F., Serrazanetti, D. I., Tabanelli, G., Montanari, C., Gardini, F., & Lanciotti, R. (2015). Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce. Food Microbiology, 47, 74–84. https://doi.org/10.1016/j.fm.2014.11.008
- Soares, C. D. F., de Luca Sarantópoulos, C. I. G., & Kluge, R. A. (2018). Passive modified atmosphere affects the quality of minimally processed escarole. Journal of Food Processing and Preservation, 42(9), e13724. https://doi.org/10.1111/jfpp.13724
- Souza, A. C. F., de Almeida, A. T., Marques, M. J. L., & Souza, J. F. (2020). Microbiological analysis of minimally processed fruits and vegetables marketed in supermarkets in the city of Macapá-Amapá. Research, Society and Development, 9(6), 148963751. https://doi.org/10.33448/rsd-v9i6.3751
10.33448/rsd?v9i6.3751 Google Scholar
- Sripong, K., Uthairatanakij, A., & Jitareerat, P. (2022). Impact of gaseous ozone on microbial contamination and quality of fresh-cut durian. Scientia Horticulturae, 294, 110799. https://doi.org/10.1016/j.scienta.2021.110799
- Tan, S. Y., Miks-Krajnik, M., Neo, S. Y., Tan, A., Khoo, G. H., & Yuk, H. G. (2015). Effectiveness of various sanitizer treatments for inactivating natural microflora and Salmonella spp. on turnip (Pachyrhizus erosus). Food Control, 54, 216–224. https://doi.org/10.1016/j.foodcont.2015.02.012
- Tantratian, S., & Balmuang, N. (2021). Enriched makiang (Cleistocalyx nervosum var. paniala) seed extract and citric acid to control pathogenic bacteria and color of fresh cut cantaloupe. LWT-Food Science and Technology, 138, 8. https://doi.org/10.1016/j.lwt.2020.110626
- Tewari, S., Sehrawat, R., Nema, P. K., & Kaur, B. P. (2017). Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: A review. Journal of Food Biochemistry, 41(1), e12319. https://doi.org/10.1111/jfbc.12319
- Tiecco, M., Cardinali, G., Roscini, L., Germani, R., & Corte, L. (2013). Biocidal and inhibitory activity screening of de novo synthesized surfactants against two eukaryotic and two prokaryotic microbial species. Colloids and Surfaces B: Biointerfaces, 111, 407–417. https://doi.org/10.1016/j.colsurfb.2013.06.033
- Tinello, F., & Lante, A. (2018). Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies, 50, 73–83. https://doi.org/10.1016/j.ifset.2018.10.008
- Tomadoni, B., Moreira, M. R., Pereda, M., & Ponce, A. G. (2018). Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT-Food Science and Technology, 97, 384–389. https://doi.org/10.1016/j.lwt.2018.07.029
- Tomás-Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853–876. https://doi.org/10.1002/jsfa.885
- Tornuk, F., Cankurt, H., Ozturk, I., Sagdic, O., Bayram, O., & Yetim, H. (2011). Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. International Journal of Food Microbiology, 148(1), 30–35. https://doi.org/10.1016/j.ijfoodmicro.2011.04.022
- Tudela, J. A., Hernandeza, N., Perez-Vicente, A., & Gil, M. I. (2017). Growing season climates affect quality of fresh-cut lettuce. Postharvest Biology and Technology, 123, 60–68. https://doi.org/10.1016/j.postharvbio.2016.08.013
- Turella, C. C. B., Rodrigues, M. L., Torres, M. C. L., Geraldine, R. M., & Silveira, M. F. A. (2017). Revestimento comestível incorporado com cisteína para inibição do escurecimento enzimático de maçã minimamente processada. Brazilian Journal of Food Research, 8(1), 56–71. https://doi.org/10.3895/rebrapa.v8n1.3686
10.3895/rebrapa.v8n1.3686 Google Scholar
- Ukuku, D. O., Mukhopadhyay, S., Olanya, O. M., & Niemira, B. A. (2019). Effect of cold storage on survivors and recovery of injured Salmonella bacteria on fresh-cut pieces prepared from whole melons treated with heat and hydrogen peroxide. Journal of Food Processing and Preservation, 43(7), e13943. https://doi.org/10.1111/jfpp.13943
- Ummat, V., Singh, A. K., & Sidhu, G. K. (2018). Effect of aqueous ozone on quality and shelf life of shredded green bell pepper (Capsicum annuum). Journal of Food Processing and Preservation, 42, 1–14. https://doi.org/10.1111/jfpp.13718
- Uscanga-Sosa, D. P., Perez-Gago, M. B., Gomez-Merino, F. C., Herrera-Corredor, J. A., Hernandez-Cazares, A. S., & Contreras-Oliva, A. (2020). Effect of antioxidants and pH on browning and firmness of minimally processed eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 79–89. https://doi.org/10.15835/nbha48111700
- Valencia-Chamorro, S. A., Palou, L., del Rio, M. A., & Perez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900. https://doi.org/10.1080/10408398.2010.485705
- Van Haute, S., Sampers, I., Holvoet, K., & Uyttendaele, M. (2014). Physicochemical quality and chemical safety of chlorine as a reconditioning agent and wash water disinfectant for fresh-cut lettuce washing (vol 79, pg 2850, 2013). Applied and Environmental Microbiology, 80(16), 5151. https://doi.org/10.1128/aem.01963-14
- Van Haute, S., Tryland, I., Veys, A., & Sampers, I. (2015). Wash water disinfection of a full-scale leafy vegetables washing process with hydrogen peroxide and the use of a commercial metal ion mixture to improve disinfection efficiency. Food Control, 50, 173–183. https://doi.org/10.1016/j.foodcont.2014.08.028
- Varoquaux, P., & Wiley, R. C. (2017). Minimally processed refrigerated fruits and vegetables (pp. 153–186). Biological and biochemical changes in minimally processed refrigerated fruits and vegetables, Springer.
10.1007/978-1-4939-7018-6_5 Google Scholar
- Vilas Boas, A. C., Henrique, P. D. C., Lima, L. C. O. D., & Pereira, M. C. D. A. (2015). Conservation of minimally processed pears subjected to chemical treatments. Revista Brasileira de Fruticultura, 37(4), 1009–1019. https://doi.org/10.1590/0100-2945-247/14
- Vilas-Boas, E. V. B., & Kader, A. A. (2007). Effect of 1-methylcyclopropene (1-MCP) on softening of fresh-cut kiwifruit, mango and persimmon slices. Postharvest Biology and Technology, 43(2), 238–244. https://doi.org/10.1016/j.postharvbio.2006.09.010
- Vilas-Boas, E. V. D., & Kader, A. A. (2006). Effect of atmospheric modification, 1-MCP and chemicals on quality of fresh-cut banana. Postharvest Biology and Technology, 39(2), 155–162. https://doi.org/10.1016/j.postharvbio.2005.09.010
- Vitti, M. C. D., Preczenbah, A. P., Calaboni, C., & Kluge, R. A. (2019). Atividade enzimática e conteúdo fenólico em batatas minimamente processadas influenciados pela aplicação de antioxidantes. Revista Iberoamericana de Tecnología Postcosecha, 20(1), 102–115 https://www.redalyc.org/articulo.oa?id=81359562010
- Vivek, K., Singh, S. S., Ritesh, W., Soberly, M., Baby, Z., Baite, H., Mishra, S., & Pradhan, R. C. (2019). A review on postharvest management and advances in the minimal processing of fresh-cut fruits and vegetables. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 1178–1187. https://doi.org/10.15414/jmbfs.2019.8.5.1178-1187
- Volpe, S., Cavella, S., & Torrieri, E. (2019). Biopolymer coatings as alternative to modified atmosphere packaging for shelf life extension of minimally processed apples. Coatings, 9(9), 569. https://doi.org/10.3390/coatings9090569
- Waghmare, R. B., & Annapure, U. S. (2017). Effects of hydrogen peroxide, modified atmosphere and their combination on quality of minimally processed cluster beans. Journal of Food Science and Technololy, 54(11), 3658–3665. https://doi.org/10.1007/s13197-017-2827-x
- Wang, H., Li, Y. B., & Slavik, M. F. (2001). Efficacy of cetylpyridinium chloride in immersion treatment for reducing populations of pathogenic bacteria on fresh-cut vegetables. Journal of Food Protection, 64(12), 2071–2074. https://doi.org/10.4315/0362-028x-64.12.2071
- Wang, J., Wang, S., Sun, Y., Li, C., Li, Y., Zhang, Q., & Wu, Z. (2019). Reduction of Escherichia coli O157:H7 and naturally present microbes on fresh-cut lettuce using lactic acid and aqueous ozone. RSC Advances, 9(39), 22636–22643. https://doi.org/10.1039/c9ra03544c
- Wang, J. Y., Zhang, Y. Y., Yu, Y. G., Wu, Z. X., & Wang, H. B. (2021). Combination of ozone and ultrasonic-assisted aerosolization sanitizer as a sanitizing process to disinfect fresh-cut lettuce. Ultrasonics Sonochemistry, 76, 105622. https://doi.org/10.1016/j.ultsonch.2021.105622
- Watada, A. E. (1986). Effects of ethylene on the quality of fruits and vegetables. Food Technology, 40(5), 82–85.
- Wei, H. Y., Seidi, F., Zhang, T. W., Jin, Y. C., & Xiao, H. N. (2021). Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemistry, 337, 12. https://doi.org/10.1016/j.foodchem.2020.127750
- Weichmann, J. (1987). Low oxygen effects. In J. Weichmann (Ed.), Postharvest physiology of vegetables (pp. 231–237). Marcel Dekker, Inc.
- Wen, B., Li, D., Tang, D., Huang, Z., Kedbanglai, P., Ge, Z. B., Du, X., & Supapvanich, S. (2020). Effects of simultaneous ultrasonic and cysteine treatment on antibrowning and physicochemical quality of fresh-cut lotus roots during cold storage. Postharvest Biology and Technology, 168, 111294. https://doi.org/10.1016/j.postharvbio.2020.111294
- Wiley, R. C., & Yildiz, F. (2017). Introduction to minimally processed refrigerated (MPR) fruits and vegetables. In Minimally processed refrigerated fruits and vegetables (pp. 3–15). Springer. https://doi.org/10.1007/978-1-4939-7018-6_1
10.1007/978-1-4939-7018-6_1 Google Scholar
- Wilson, M. D., Stanley, R. A., Eyles, A., & Ross, T. (2019). Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition, 59(3), 411–422. https://doi.org/10.1080/10408398.2017.1375892
- Xie, G. F., Wang, L. R., Fan, K. X., Liu, N., Liu, Y. L., & Zhao, Z. B. (2020). Postharvest 1-methylcyclopropene treatments maintain the quality of Rosa sterilis D. shi during storage. Food Science and Technology, 40(1), 89–94. https://doi.org/10.1590/fst.32818
- Xisto, A., Boas, E., Nunes, E. E., Boas, B. M. V., & Guerreiro, M. C. (2012). Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage. Ciência e Tecnologia de Alimentos, 32(1), 173–178. https://doi.org/10.1590/s0101-20612012005000020
10.1590/s0101?20612012005000020 Google Scholar
- Xu, D., Chen, C., Zhou, F., Liu, C., Tian, M., Zeng, X., & Jiang, A. (2022). Vacuum packaging and ascorbic acid synergistically maintain the quality and flavor of fresh-cut potatoes. LWT-Food Science and Technology, 162, 113356. https://doi.org/10.1016/j.lwt.2022.113356
- Yahia, E. M., & Carrillo-Lopez, A. (2018). Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing.
- Yu, L., & Shi, H. (2021). Effect of two mulberry (Morus alba L.) leaf polyphenols on improving the quality of fresh-cut cantaloupe during storage. Food Control, 121, 107624. https://doi.org/10.1016/j.foodcont.2020.107624
- Yu, Y., Jiang, X. P., Ramaswamy, H. S., Zhu, S. M., & Li, H. H. (2018). High pressure processing treatment of fresh-cut carrots: effect of presoaking in calcium salts on quality parameters. Journal of Food Quality, 2018, 1–9. https://doi.org/10.1155/2018/7863670
- Zhu, X. Y., Shen, L., Fu, D. W., Si, Z. W., Wu, B., Chen, W. X., & Li, X. P. (2015). Effects of the combination treatment of 1-MCP and ethylene on the ripening of harvested banana fruit. Postharvest Biology and Technology, 107, 23–32. https://doi.org/10.1016/j.postharvbio.2015.04.010
- Zudaire, L., Viñas, I., Abadias, M., Simó, J., & Aguiló-Aguayo, I. (2018). Efficacy of chlorine, peroxyacetic acid and mild-heat treatment on the reduction of natural microflora and maintenance of quality of fresh-cut calçots (Allium cepa L.). LWT-Food Science and Technology, 95, 339–345. https://doi.org/10.1016/j.lwt.2018.05.005