Exposure to indoor endocrine-disrupting chemicals and childhood asthma and obesity
Corresponding Author
Inês Paciência
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Correspondence
Inês Paciência, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João; Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI); EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
Email: [email protected]
Search for more papers by this authorJoão Cavaleiro Rufo
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Search for more papers by this authorDiana Silva
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorCarla Martins
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorFrancisca Mendes
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorMariana Farraia
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorLuís Delgado
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorEduardo de Oliveira Fernandes
Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
Search for more papers by this authorPatrícia Padrão
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Faculdade de Ciências da Nutrição e, Alimentação da Universidade do Porto, Porto, Portugal
Search for more papers by this authorPedro Moreira
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Faculdade de Ciências da Nutrição e, Alimentação da Universidade do Porto, Porto, Portugal
Search for more papers by this authorMilton Severo
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
Search for more papers by this authorHenrique Barros
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
Search for more papers by this authorAndré Moreira
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Faculdade de Ciências da Nutrição e, Alimentação da Universidade do Porto, Porto, Portugal
Search for more papers by this authorCorresponding Author
Inês Paciência
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Correspondence
Inês Paciência, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João; Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI); EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
Email: [email protected]
Search for more papers by this authorJoão Cavaleiro Rufo
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Search for more papers by this authorDiana Silva
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorCarla Martins
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorFrancisca Mendes
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorMariana Farraia
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorLuís Delgado
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
Search for more papers by this authorEduardo de Oliveira Fernandes
Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
Search for more papers by this authorPatrícia Padrão
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Faculdade de Ciências da Nutrição e, Alimentação da Universidade do Porto, Porto, Portugal
Search for more papers by this authorPedro Moreira
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Faculdade de Ciências da Nutrição e, Alimentação da Universidade do Porto, Porto, Portugal
Search for more papers by this authorMilton Severo
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
Search for more papers by this authorHenrique Barros
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
Search for more papers by this authorAndré Moreira
Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Faculdade de Ciências da Nutrição e, Alimentação da Universidade do Porto, Porto, Portugal
Search for more papers by this authorAbstract
Background
Indoor air contaminants may act as endocrine-disrupting chemicals (EDCs). However, to what extent these contaminants affect health is poorly known. We aimed to assess the association between EDCs exposure and asthma, respiratory symptoms and obesity in schoolchildren.
Methods
Data from a cross-sectional analysis of 815 participants from 20 schools in Porto, Portugal, were analysed. Symptoms were assessed, asthma was defined on lung function, and airway reversibility and body mass index (BMI) were calculated. The concentrations of 13 volatile organic compounds and 2 aldehydes identified as EDCs were measured in 71 classrooms throughout 1 week. Principal component analysis (PCA) was used to assess the effect of co-exposure. Associations were estimated by regression coefficients using linear and logistic regression models.
Results
Increased individual and combined EDCs levels were found in classrooms having more children with asthma and obesity. Higher levels of hexane, styrene, cyclohexanone, butylated hydroxytoluene and 2-butoxyethanol were associated with obesity, and higher levels of cyclohexanone were associated with increased child BMI. Toluene, o-xylene, m/p-xylene and ethylbenzene were significantly associated with nasal obstruction. A positive association was found between PC1 and the risk of obese asthma (OR = 1.43, 95% CI 1.01, 1.98) and between PC2 and overweight (OR = 1.51, 95% CI 1.28, 1.79). PC1 and PC2 were also associated with nasal obstruction, and PC2 was associated with breathing difficulties and lean body mass, although EDCs concentrations were low.
Conclusions
Our findings further support the role of EDCs in asthma and obesity development. Moreover, even low levels of indoor exposure may influence the risk of asthma, respiratory symptoms and obesity.
Graphical Abstract
Exposure to low levels of EDCs have an effect on asthma, current symptoms and obesity in school-age children. Individual or combined EDCs also associate with ANS changes, that may possibly mediate the interaction between EDCs and childhood asthma and obesity. Our findings may contribute to action plans to reduce exposures to EDCs and to promote a healthy indoor school environment.
ANS: autonomic nervous system; BHT: butylated hydroxytoluene; EDCs: endocrine-disrupting chemicals; The circles represent the Odds ratio (OR) values, being the size proportional do the OR.
Circles: OR <1; square: OR >1.
*Positive bronchodilatation; **Obese asthma; ┴ Nasal obstruction; ┴ ┴ Breathing difficulties
CONFLICTS OF INTEREST
The authors declare that they have no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
all13740-sup-0001-Supinfo.docxWord document, 124.7 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ (1994). 2009; 43(1): 170-181.
- 2Butte W, Heinzow B. Pollutants in house dust as indicators of indoor contamination. Rev Environ Contam Toxicol. 2002; 175(175): 1274-46.
- 3Schweizer C, Edwards RD, Bayer-Oglesby L, et al. Indoor time-microenvironment-activity patterns in seven regions of Europe. J Eposure Sci Environ Epidemiol. 2007; 17(2): 170-181.
- 4Annesi-Maesano I, Baiz N, Banerjee S, Rudnai P, Rive S, The Sinphonie G. Indoor air quality and sources in schools and related health effects. J Toxicol Environ Health B. 2013; 16(8): 491-550.
- 5Sly PD, Carpenter DO, Van den Berg M, et al. Health Consequences of Environmental Exposures: causal Thinking in Global Environmental Epidemiology. Ann Glob Health. 2016; 82(1): 3-9.
- 6 World Health Organization. Global Status Report on noncommunicable diseases 2014; 2014.
- 7 World Health Organization. Noncommunicable diseases. 2017; Available from: http://www.who.int/mediacentre/factsheets/fs355/en/. Accessed Febraury 09, 2018
- 8 World Health Organization. State of the Science of Endocrine Disrupting Chemicals - 2012; 2012.
- 9Henley DV, Korach KS. Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology. 2006; 147(6 Suppl): S25-32.
- 10Darbre PD. In: Endocrine Disruption and Human Health. Boston: Academic Press; 2015: pp 27-45.
- 11Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater. 2017; 340: 360-383.
- 12Kuo CH, Hsieh CC, Kuo HF, et al. Phthalates suppress type I interferon in human plasmacytoid dendritic cells via epigenetic regulation. Allergy. 2013; 68(7): 870-879.
- 13Darbre PD. Endocrine Disruptors and Obesity. Curr Obes Rep. 2017; 6(1): 18-27.
- 14Meeker JD. Exposure to environmental endocrine disruptors and child development. Arch Pediatr Adolesc Med. 2012; 166(10): 952-958.
- 15 National Heart Lung and Blood Institute. Expert Panel Report 3 (EPR 3): Guidelines for the Diagnosis and Management of Asthma; 2007.
- 16de Freitas Dantas Gomes EL, Costa D. Evaluation of functional, autonomic and inflammatory outcomes in children with asthma. World J Clin Cases. 2015; 3(3): 301-309.
- 17Costa J, Moreira A, Moreira P, Delgado L, Silva D. Effects of weight changes in the autonomic nervous system: a systematic review and meta-analysis. Clin Nutr. 2019; 38(1): 110-126.
- 18Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011; 127(3–5): 204-215.
- 19Asher MI, Keil U, Anderson HR, et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J. 1995; 8(3): 483-491.
- 20McCarthy HD, Cole TJ, Fry T, Jebb SA, Prentice AM. Body fat reference curves for children. Int J Obes. 2006; 30(4): 598-602.
- 21Barlow SE. Expert Committee Recommendations Regarding the Prevention, Assessment, and Treatment of Child and Adolescent Overweight and Obesity: summary Report. Pediatrics. 2007; 120(Supplement 4): S164.
- 22 World Health Organization. WHO child growth standards : length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age : methods and development; 2006.
- 23Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012; 7(4): 284-294.
- 24Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005; 26(2): 319-338.
- 25Dweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011; 184(5): 602-615.
- 26Vaughan J, Ngamtrakulpanit L, Pajewski TN, et al. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur Respir J. 2003; 22(6): 889.
- 27Paciencia I, Madureira J, Rufo J, Moreira A, Fernandes Ede O. A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. J Toxicol Environ Health B Crit Rev. 2016; 19(2): 47-64.
- 28ISO 16000-4:2011. Determination of formaldehyde – Diffusive sampling method. In: Organization IS, editor.; 2011.
- 29 The endocrine disruption exchange. TEDX list of potential endocrine disruptors. 2017; Available from: https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list. Accessed October 11, 2017.
- 30Monaco A, Cattaneo R, Mesin L, Ciarrocchi I, Sgolastra F, Pietropaoli D. Dysregulation of the autonomous nervous system in patients with temporomandibular disorder: a pupillometric study. PLoS ONE. 2012; 7(9): e45424.
- 31Wang Y, Zekveld AA, Naylor G, et al. Parasympathetic Nervous System Dysfunction, as Identified by Pupil Light Reflex, and Its Possible Connection to Hearing Impairment. PLoS ONE. 2016; 11(4): e0153566.
- 32 Endocrine Society. Introduction to Endocrine Disrupting Chemicals (EDCs) A Guide for Public Interest Organizations and Policy-makers; 2014.
- 33Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009; 30(4): 293-342.
- 34Vandenberg LN, Colborn T, Hayes TB, et al. Hormones and Endocrine-Disrupting Chemicals: low-Dose Effects and Nonmonotonic Dose Responses. Endocr Rev. 2012; 33(3): 378-455.
- 35Franken C, Lambrechts N, Govarts E, et al. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int J Hyg Environ Health. 2017; 220(2 Pt B): 468-477.
- 36Gascon M, Casas M, Morales E, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015; 135(2): 370-378.
- 37Donohue KM, Miller RL, Perzanowski MS, et al. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol. 2013; 131(3): 736.
- 38Kim JT, Lee HK. Childhood obesity and endocrine disrupting chemicals. Ann Pediatr Endocrinol Metab. 2017; 22(4): 219-225.
- 39Vafeiadi M, Roumeliotaki T, Myridakis A, et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ Res. 2016; 146: 379-387.
- 40Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015; 40(1): 241-258.
- 41Kuo CH, Yang SN, Kuo PL, Hung CH. Immunomodulatory effects of environmental endocrine disrupting chemicals. Kaohsiung J Med Sci. 2012; 28(7 Suppl): S37-42.
- 42Yang SN, Hsieh CC, Kuo HF, et al. The effects of environmental toxins on allergic inflammation. Allergy Asthma Immunol Res. 2014; 6(6): 478-484.
- 43Kuo PL, Hsu YL, Huang MS, Tsai MJ, Ko YC. Ginger suppresses phthalate ester-induced airway remodeling. J Agric Food Chem. 2011; 59(7): 3429-3438.
- 44Wang IJ, Karmaus WJJ, Chen S-L, Holloway JW, Ewart S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics. 2015; 7(1): 27.
- 45Akopian AN, Fanick ER, Brooks EG. TRP channels and traffic-related environmental pollution-induced pulmonary disease. Semin Immunopathol. 2016; 38(3): 331-338.
- 46Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA. Transient receptor potential ankyrin 1 mediates toluene diisocyanate-evoked respiratory irritation. Am J Respir Cell Mol Biol. 2009; 40(6): 756-762.
- 47Nassini R, Pedretti P, Moretto N, et al. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS ONE. 2012; 7(8): e42454.
- 48Cantero-Recasens G, Gonzalez JR, Fandos C, et al. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J Biol Chem. 2010; 285(36): 27532-27535.
- 49Yang O, Kim HL, Weon JI, Seo YR. Endocrine-disrupting Chemicals: review of Toxicological Mechanisms Using Molecular Pathway Analysis. J Cancer Prev. 2015; 20(1): 12-24.
- 50Stel J, Legler J. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals. Endocrinology. 2015; 156(10): 3466-3472.
- 51Nappi F, Barrea L, Di Somma C, et al. Endocrine Aspects of Environmental “Obesogen” Pollutants. Int J Environ Res Public Health. 2016; 13(8): 765.
- 52Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002; 8(2): 185-192.
- 53Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. Front Physiol. 2017; 8: 665.
- 54Ali Z, Ulrik CS. Obesity and asthma: a coincidence or a causal relationship? A systematic review Respir Med. 2013; 107(9): 1287-1300.
- 55Shore SA, Cho Y. Obesity and Asthma: microbiome-Metabolome Interactions. Am J Respir Cell Mol Biol. 2016; 54(5): 609-617.
- 56Nadal A, Quesada I, Tuduri E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol. 2017; 13(9): 536-546.
- 57Arteaga-Solis E, Kattan M. Obesity in asthma: location or hormonal consequences? J Allergy Clin Immunol. 2014; 133(5): 1315-1316.
- 58Arteaga-Solis E, Zee T, Emala CW, Vinson C, Wess J, Karsenty G. Inhibition of Leptin Regulation of Parasympathetic Signaling as a Cause of Extreme Body Weight-Associated Asthma (vol 17, pg 35, 2013). Cell Metab. 2013; 17(3): 463-464.
- 59Mai XM, Chen Y, Krewski D. Does leptin play a role in obesity-asthma relationship? Pediatr Allergy Immunol. 2009; 20(3): 207-212.
- 60Oziol L, Alliot F, Botton J, et al. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France). Environ Sci Pollut Res Int. 2017; 24(3): 3142-3152.
- 61 Federal Environment Agency UBA. Guidelines for Indoor Air Hygiene in School Buildings; 2008.
- 62McAlary T, Groenevelt H, Disher S, et al. Passive sampling for volatile organic compounds in indoor air-controlled laboratory comparison of four sampler types. Environ Sci Process Impacts. 2015; 17(5): 896-905.
- 63 European Collaborative Action. Report No 14 Sampling strategies for volatile organic compounds (VOCs) in indoor air; 1994.
- 64Kortenkamp A. Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int J Androl. 2008; 31(2): 233-240.
- 65Haug LS, Huber S, Becher G, Thomsen C. Characterisation of human exposure pathways to perfluorinated compounds–comparing exposure estimates with biomarkers of exposure. Environ Int. 2011; 37(4): 687-693.
- 66Goosey E, Harrad S. Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environ Int. 2011; 37(1): 86-92.
- 67Lunder S, Hovander L, Athanassiadis I, Bergman A. Significantly Higher Polybrominated Diphenyl Ether Levels in Young US Children than in Their Mothers. Environ Sci Technol. 2010; 44(13): 5256-5262.
- 68Rudel RA, Dodson RE, Newton E, Zota AR, Brody JG. Correlations Between Urinary Phthalate Metabolites and Phthalates, Estrogenic Compounds 4-Butyl phenol and o-Phenyl phenol, and Some Pesticides in Home Indoor Air and House Dust. Epidemiology. 2008; 19(6): S332.
- 69Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003; 37(20): 4543-4553.