Crystal structure of bacteriophage ϕNIT1 zinc peptidase PghP that hydrolyzes γ-glutamyl linkage of bacterial poly-γ-glutamate
Corresponding Author
Zui Fujimoto
Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
Zui Fujimoto, Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan===
Keitarou Kimura, Applied Microbiology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan===
Search for more papers by this authorCorresponding Author
Keitarou Kimura
Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
Zui Fujimoto, Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan===
Keitarou Kimura, Applied Microbiology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan===
Search for more papers by this authorCorresponding Author
Zui Fujimoto
Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
Zui Fujimoto, Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan===
Keitarou Kimura, Applied Microbiology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan===
Search for more papers by this authorCorresponding Author
Keitarou Kimura
Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
Zui Fujimoto, Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan===
Keitarou Kimura, Applied Microbiology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan===
Search for more papers by this authorAbstract
Poly-γ-glutamate hydrolase P (PghP) of Bacillus subtilis bacteriophage ΦNIT1 hydrolyzes the γ-glutamyl peptide linkage of extracellular poly-γ-glutamate produced by bacilli, which facilitates infection and propagation of phage progenies. Crystal structure of PghP was determined at a resolution of 1.9 Å. Structure of PghP was elucidated as a globular protein with an open α/β mixed core structure and a seven-stranded parallel/anti-parallel β-sheet. The β-sheet contained a core four-stranded parallel β-sheet. A zinc-binding motif, His-Glu-His, was identified at the C-terminal end of the β-sheet. Structure analysis demonstrated that PghP, which had not been previously classified into any peptidase/protease family due to lack of amino acid sequence similarity with known enzymes, had a catalytic center containing a zinc ion and an overall topology resembling mammalian carboxypeptidase A and related enzymes. Structural comparisons indicated important amino acid residues of PghP for catalysis and recognition of the γ-peptide bond of poly-γ-glutamate, which was confirmed by site-directed mutagenesis of PghP. Proteins 2011. © 2012 Wiley Periodicals, Inc.
REFERENCES
- 1 Rawlings ND,Morton FR,Kok CY,Kong J,Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res 2008; 36: D320–D325.
- 2 Lennarz WJ,Strittmatter WJ. Cellular functions of metallo-endoproteinases. Biochim Biophys Acta 1991; 1071: 149–158.
- 3 Tallant C,Marrero A,Gomis-Ruth FX. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim Biophys Acta 2010; 1803: 20–28.
- 4 Kimura K,Itoh Y. Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Appl Environ Microbiol 2003; 69: 2491–2497.
- 5 Kimura K,Tran LS,Do TH,Itoh Y. Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Biosci Biotech Biochem 2009; 73: 1149–1155.
- 6 Candela T,Fouet A. Poly-gamma-glutamate in bacteria. Mol Microbiol 2006; 60: 1091–1098.
- 7 Candela T,Fouet A. Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 2005; 57: 717–726.
- 8 Kimura K,Tran LS,Uchida I,Itoh Y. Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology 2004; 150: 4115–4123.
- 9 Ashiuchi M,Nishikawa Y,Matsunaga K,Yamamoto M,Shimanouchi K,Misono H. Genetic design of conditional D-glutamate auxotrophy for Bacillus subtilis: use of a vector-borne poly-gamma-glutamate synthetic system. Biochem Biophys Res Commun 2007; 362: 646–650.
- 10 Kocianova S,Vuong C,Yao Y,Voyich JM,Fischer ER,DeLeo FR,Otto M. Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 2005; 115: 688–694.
- 11 Uchida I,Makino S,Sasakawa C,Yoshikawa M,Sugimoto C,Terakado N. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol Microbiol 1993; 9: 487–496.
- 12 Volcani BE,Margalith P. A new species (Flavobacterium polyglutamicum) which hydrolyzes the gamma-L-glutamyl bond in polypeptides. J Bacteriol 1957; 74: 646–655.
- 13 Tanaka T,Hiruta O,Futamura T,Uotani K,Satoh A,Taniguchi M,Oi S. Purification and characterization of poly(γ-glutamic acid) hydrolase from a filamentous fungus, Myrothecium sp. TM-4222. Biosci Biotech Biochem 1993; 57: 2148–2153.
- 14 Tanaka T,Yaguchi T,Hiruta O,Futamura T,Uotani K,Satoh A,Taniguchi M,Oi S. Screening for microorganisms having poly(γ-glutamic acid) endohydrolase activity and the enzyme production by Myrothecium sp. TM-4222. Biosci Biotech Biochem 1993; 57: 1809–1810.
- 15 Kimura K,Fujimoto Z. Enzymatic degradation of poly-gamma-glutamic acid. In: Y Hamano, editor. Amino-Acid Homopolymers Occurring in Nature. Heidelberg: Springer; 2010. p 95–117.
- 16 Sutherland MD,Kozel TR. Macrophage uptake, intracellular localization, and degradation of poly-gamma-D-glutamic acid, the capsular antigen of Bacillus anthracis. Infect Immun 2009; 77: 532–538.
- 17 Wu R,Richter S,Zhang RG,Anderson VJ,Missiakas D,Joachimiak A. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD. J Biol Chem 2009; 284: 24406–24414.
- 18 Fujimoto Z,Shiga I,Itoh Y,Kimura K. Crystallization and preliminary crystallographic analysis of poly-γ-glutamate hydrolase from bacteriophage ΦNIT1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65: 913–916.
- 19 LeMaster DM,Richards FM. 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 1985; 24: 7263–7268.
- 20 Doublie S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol 1997; 276: 523–530.
- 21 Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997; 276: 307–326.
- 22 Terwilliger TC. Automated structure solution, density modification and model building. Acta Crystallogr D Biol Crystallogr 2002; 58: 1937–1940.
- 23 Terwilliger TC,Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 1999; 55: 849–861.
- 24 Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126–2132.
- 25 Murshudov GN,Vagin AA,Dodson EJ. Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr D Biol Crystallogr 1997; 53: 240–255.
- 26 Collaborative Computational Project N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994; 50: 760–763.
- 27 Vagin A,Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997; 30: 1022–1025.
- 28 Cohen SX,Morris RJ,Fernandez FJ,Ben Jelloul M,Kakaris M,Parthasarathy V,Lamzin VS,Kleywegt GJ,Perrakis A. Towards complete validated models in the next generation of ARP/wARP. Acta Crystallogr D Biol Crystallogr 2004; 60: 2222–2229.
- 29 Padilla JE,Yeates TO. A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr D Biol Crystallogr 2003; 59: 1124–1130.
- 30 Adams PD,Grosse-Kunstleve RW,Hung LW,Ioerger TR,McCoy AJ,Moriarty NW,Read RJ,Sacchettini JC,Sauter NK,Terwilliger TC. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002; 58: 1948–1954.
- 31 Brünger A,Adams P,Clore G,DeLano W,Gros P,Grosse-Kunstleve R,Jiang J,Kuszewski J,Nilges M,Pannu N,Read R,Rice L,Simonson T,Warren G. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54: 905–921.
- 32 Laskowski RA,MacArthur MW,Moss DS,Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993; 26: 283–291.
- 33 Ramachandran GN,Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem 1968; 23: 283–437.
- 34 Kraulis PJ. Atomic accessible and contact surfaces as restraints in the Hendrickson & Konnert refinement program. J Appl Crystallogr 1991; 24: 946–950.
- 35 Merritt EA,Bacon DJ. Raster3D photorealistic molecular graphics. Methods Enzymol 1997; 277: 505–524.
- 36 Matthews BW. Solvent content of protein crystals. J Mol Biol 1968; 33: 491–497.
- 37 Brooks CL,Blackler RJ,Gerstenbruch S,Kosma P,Muller-Loennies S,Brade H,Evans SV. Pseudo-symmetry and twinning in crystals of homologous antibody Fv fragments. Acta Crystallogr D Biol Crystallogr 2008; 64: 1250–1258.
- 38 MacRae IJ,Doudna JA. An unusual case of pseudo-merohedral twinning in orthorhombic crystals of Dicer. Acta Crystallogr D Biol Crystallogr 2007; 63: 993–999.
- 39 Rees DC,Lipscomb WN. Structure of potato inhibitor complex of carboxypeptidase A at 5.5-Å resolution. Proc Natl Acad Sci USA 1980; 77: 277–280.
- 40
Holm L,Sander C.
Dictionary of recurrent domains in protein structures.
Proteins Struct Funct Bioinf
1998;
33:
88–96.
10.1002/(SICI)1097-0134(19981001)33:1<88::AID-PROT8>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 41 Lipscomb WN,Reeke GN,Jr.,Hartsuck JA,Quiocho FA,Bethge PH. The structure of carboxypeptidase A. 8. Atomic interpretation at 0.2 nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. Philos Trans R Soc Lond B Biol Sci 1970; 257: 177–214.
- 42 Cappalonga AM,Alexander RS,Christianson DW. Structural comparison of sulfodiimine and sulfonamide inhibitors in their complexes with zinc enzymes. J Biol Chem 1992; 267: 19192–19197.
- 43 Kilshtain-Vardi A,Glick M,Greenblatt HM,Goldblum A,Shoham G. Refined structure of bovine carboxypeptidase A at 1.25 Å resolution. Acta Crystallogr D Biol Crystallogr 2003; 59: 323–333.
- 44 Estebanez-Perpina E,Bayes A,Vendrell J,Jongsma MA,Bown DP,Gatehouse JA,Huber R,Bode W,Aviles FX,Reverter D. Crystal structure of a novel mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera. J Mol Biol 2001; 313: 629–638.
- 45 Teplyakov A,Polyakov K,Obmolova G,Strokopytov B,Kuranova I,Osterman A,Grishin N,Smulevitch S,Zagnitko O,Galperina O,Matz M,Stepanov V. Crystal structure of carboxypeptidase T from Thermoactinomyces vulgaris. Eur J Biochem 1992; 208: 281–288.
- 46 Aloy P,Companys V,Vendrell J,Aviles FX,Fricker LD,Coll M,Gomis-Ruth FX. The crystal structure of the inhibitor-complexed carboxypeptidase D domain II and the modeling of regulatory carboxypeptidases. J Biol Chem 2001; 276: 16177–16184.
- 47 Solomon BM,Larsen KS,Riordan JF. Catalytic and conformational changes induced by limited subtilisin cleavage of bovine carboxypeptidase A. Biochemistry 1990; 29: 7303–7309.
- 48 Christianson DW. Structural biology of zinc. Adv Protein Chem 1991; 42: 281–355.
- 49 Xu D,Guo H. Quantum mechanical/molecular mechanical and density functional theory studies of a prototypical zinc peptidase (carboxypeptidase A) suggest a general acid-general base mechanism. J Am Chem Soc 2009; 131: 9780–9788.
- 50 Christianson DW,Lipscomb WN. Binding of a possible transition state analogue to the active site of carboxypeptidase A. Proc Natl Acad Sci USA 1985; 82: 6840–6844.
- 51 Christianson DW,Lipscomb WN. X-ray crystallographic investigation of substrate binding to carboxypeptidase A at subzero temperature. Proc Natl Acad Sci USA 1986; 83: 7568–7572.
- 52 Hu L,Mulfinger LM,Phillips AT. Purification and properties of formylglutamate amidohydrolase from Pseudomonas putida. J Bacteriol 1987; 169: 4696–4702.
- 53 Mesters JR,Barinka C,Li W,Tsukamoto T,Majer P,Slusher BS,Konvalinka J,Hilgenfeld R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J 2006; 25: 1375–1384.
- 54 Hanson JE,Kaplan AP,Bartlett PA. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors. Biochemistry 1989; 28: 6294–6305.
- 55 Kim H,Lipscomb WN. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes. Biochemistry 1990; 29: 5546–5555.
- 56 Kim H,Lipscomb WN. Comparison of the structures of three carboxypeptidase A-phosphonate complexes determined by X-ray crystallography. Biochemistry 1991; 30: 8171–8180.
- 57 Thompson JD,Gibson TJ,Plewniak F,Jeanmougin F,Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876–4882.
- 58 Hiratake J,Suzuki H,Kumagai H. Gamma-Glutamyl transpeptidase and its precursor. In: AJ Barrett, ND Rawlings, JF Woessner, editors. Handbook of Proteolytic Enzymes, 2nd ed. London: Elsevier; 2004. p 2090–2094.
- 59 Scorpio A,Chabot DJ,Day WA,O'Brien D K,Vietri NJ,Itoh Y,Mohamadzadeh M,Friedlander AM. Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob Agents Chemother 2007; 51: 215–222.