Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: Application to H3 antagonists
Corresponding Author
Brajesh K. Rai
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Pfizer Global Research and Development, Eastern Point Road, MS 8260-1421, Groton, CT 06340===Search for more papers by this authorGregory J. Tawa
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Search for more papers by this authorAlan H. Katz
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Search for more papers by this authorChristine Humblet
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Search for more papers by this authorCorresponding Author
Brajesh K. Rai
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Pfizer Global Research and Development, Eastern Point Road, MS 8260-1421, Groton, CT 06340===Search for more papers by this authorGregory J. Tawa
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Search for more papers by this authorAlan H. Katz
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Search for more papers by this authorChristine Humblet
Wyeth Research, CN8000, Princeton, New Jersey 08543-8000
Search for more papers by this authorAbstract
G Protein-Coupled Receptors (GPCRs) are integral membrane proteins that play important role in regulating key physiological functions, and are targets of about 50% of all recently launched drugs. High-resolution experimental structures are available only for very few GPCRs. As a result, structure-based drug design efforts for GPCRs continue to rely on in silico modeling, which is considered to be an extremely difficult task especially for these receptors. Here, we describe Gmodel, a novel approach for building 3D atomic models of GPCRs using a normal mode-based refinement of homology models. Gmodel uses a small set of relevant low-frequency vibrational modes derived from Random Elastic Network model to efficiently sample the large-scale receptor conformation changes and generate an ensemble of alternative models. These are used to assemble receptor–ligand complexes by docking a known active into each of the alternative models. Each of these is next filtered using restraints derived from known mutation and binding affinity data and is refined in the presence of the active ligand. In this study, Gmodel was applied to generate models of the antagonist form of histamine 3 (H3) receptor. The validity of this novel modeling approach is demonstrated by performing virtual screening (using the refined models) that consistently produces highly enriched hit lists. The models are further validated by analyzing the available SAR related to classical H3 antagonists, and are found to be in good agreement with the available experimental data, thus providing novel insights into the receptor–ligand interactions. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22571_sm_suppfig.tif17.1 MB | Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 2000; 21: 90–113.
- 2 Schwartz TW,Frimurer TM,Holst B,Rosenkilde MM,Elling CE. Molecular mechanism of 7tm receptor activation–a global toggle switch model. Annu Rev Pharmacol Toxicol 2006; 46: 481–519.
- 3 Gether U,Asmar F,Meinild AK,Rassmussen SGF. Structural basis for activation of G protein-coupled receptors. Pharmacol Toxicol 2002; 91: 304–312.
- 4 Drews J. Drug discovery: a historical perspective. Science 2000; 287: 1960–1964.
- 5 Okada T,Sugihara M,Bondar A-N,Elstner M,Entel P,Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 2004; 342: 571–583.
- 6 Palczewski K,Kumasaka T,Hori T,Behnke CA,Motoshima H,Fox BA,Trong IL,Teller DC,Okada T,Stenkamp RE,Yamamoto M,Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289: 739–745.
- 7 Okada T,Fujiyoshi Y,Silow M,Navarro J,Landau EM,Shichida Y. Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography. PNAS 2002; 99: 5982–5987.
- 8 Cherezov V,Rosenbaum DM,Hanson MA,Rasmussen SGF,Thian FS,Kobilka TS,Choi H-J,Kuhn P,Weis WI,Kobilka BK,Stevens RC. High-Resolution crystal structure of an engineered human {beta}2-adrenergic g protein coupled receptor. Science 2007; 318: 1258–1265.
- 9 Salom D,Lodowski DT,Stenkamp RE,Trong IL,Golczak M,Jastrzebska B,Harris T,Ballesteros JA,Palczewski K. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. PNAS 2006; 103: 16123–16128.
- 10 Scheerer P,Park JH,Hildebrand PW,Kim YJ,Krausz N,Choe H-W,Hofmann KP,Ernst OP. Crystal structure of opsin in its G-protein-interacting conformation. Nature 2008; 455: 497–502.
- 11 Rasmussen SGF,Choi H-J,Rosenbaum DM,Kobilka TS,Thian FS,Edwards PC,Burghammer M,Ratnala VRP,Sanishvili R,Fischetti RF,Schertler GFX,Weis WI,Kobilka BK. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 2007; 450: 383–387.
- 12 Warne T,Serrano-Vega MJ,Baker JG,Moukhametzianov R,Edwards PC,Henderson R,Leslie AGW,Tate CG,Schertler GFX. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 2008; 454: 486–491.
- 13 Jaakola V-P,Griffith MT,Hanson MA,Cherezov V,Chien EYT,Lane JR,Ijzerman AP,Stevens RC. The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008; 322: 1211–1217.
- 14 Fanelli F,DeBenedetti PG. Computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2005; 105: 3297–3351.
- 15 Henderson R,Baldwin JM,Ceska TA,Zemlin F,Beckmann E,Downing KH. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 1990; 213: 899–929.
- 16 Schertler GFX,Hargrave PA. Projection structure of frog rhodopsin in two crystal forms. PNAS 1995; 92: 11578–11582.
- 17 Schertler GFX,Villa C,Henderson R. Projection structure of rhodopsin. Nature 1993; 362: 770–772.
- 18 Baldwin JM,Schertler GFX,Unger VM. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol 1997; 272: 144–164.
- 19 Unger VM,Schertler GF. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys J 1995; 68: 1776–1786.
- 20 Evers A,Gohlke H,Klebe G. Ligand-supported Homology Modelling of Protein Binding-sites using Knowledge-based Potentials. J Mol Biol 2003; 334: 327–345.
- 21 Vaidehi N,Schlyer S,Trabanino RJ,Floriano WB,Abrol R,Sharma S,Kochanny M,Koovakat S,Dunning L,Liang M,Fox JM,de Mendonca FL,Pease JE,Goddard WA,III,Horuk R. Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J Biol Chem 2006; 281: 27613–27620.
- 22 Becker OM,Marantz Y,Shacham S,Inbal B,Heifetz A,Kalid O,Bar-Haim S,Warshaviak D,Fichman M,Noiman S. G protein-coupled receptors: in silico drug discovery in 3D. PNAS 2004; 101: 11304–11309.
- 23 Bissantz C,Schalon C,Guba W,Stahl M. Focused library design in GPCR projects on the example of 5-HT2c agonists: comparison of structure-based virtual screening with ligand-based search methods. Proteins 2005; 61: 938–952.
- 24 Bissantz C,Bernard P,Hibert M,Rognan D. Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins Struct Funct Genet 2003; 50: 5–25.
- 25 Evers A,Hessler G,Matter H,Klabunde T. Virtual screening of biogenic amine-binding G protein-coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 2005; 48: 5448–5465.
- 26 Evers A,Klabunde T. Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the Alpha1A adrenergic receptor. J Med Chem 2005; 48: 1088–1097.
- 27 Floriano WB,Vaidehi N,Goddard WA,III. Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors. Chem Senses 2004; 29: 269–290.
- 28 Freddolino PL,Kalani MYS,Vaidehi N,Floriano WB,Hall SE,Trabanino RJ,Kam VWT,Goddard WA,III. Predicted 3D structure for the human beta2 adrenergic receptor and its binding site for agonists and antagonists. PNAS 2004; 101: 2736–2741.
- 29 Hummel P,Vaidehi N,Floriano WB,Hall SE,William A. Goddard I. Test of the binding threshold hypothesis for olfactory receptors: explanation of the differential binding of ketones to the mouse and human orthologs of olfactory receptor 912–93. Protein Sci 2005; 14: 703–710.
- 30 Kalani MYS,Vaidehi N,Hall SE,Trabanino RJ,Freddolino PL,Kalani MA,Floriano WB,Kam VWT,Goddard WA,III. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. PNAS 2004; 101: 3815–3820.
- 31 Shacham S,Marantz Y,Bar-Haim S,Kalid O,Warshaviak D,Avisar N,Inbal B,Heifetz A,Fichman M,Topf M,Naor Z,Noiman S,Becker OM. PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 2004; 57: 51–86.
- 32 Pogozheva I,Przydzial M,Mosberg H. Homology modeling of opioid receptor-ligand complexes using experimental constraints. AAPS J 2005; 7: E434–E448.
- 33 Zhang Y, Sham YY, Rajamani R, Gao J, Portoghese PS. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane-aqueous system. ChemBioChem 2005; 6: 853–859.
- 34 Dastmalchi S,Church WB,Morris M. Modelling the structures of G protein-coupled receptors aided by three-dimensional validation. Bioinformatics 2008; 9( Suppl 1): S14.
- 35 Schlegel B,Laggner C,Meier R,Langer T,Schnell D,Seifert R,Stark H,Höltje H-D,Sippl W. Generation of a homology model of the human histamine H3 receptor for ligand docking and pharmacophore-based screening. J Comput Aided Mol Des 2007; 21: 437–453.
- 36 Wolf S,Böckmann M,Höweler U,Schlitter J,Gerwert K. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site. FEBS Lett 2008; 582: 3335–3342.
- 37 Kiss R,Noszál B,Rácz Á,Falus A,Eros D,Keseru GM. Binding mode analysis and enrichment studies on homology models of the human histamine H4 receptor. Eur J Med Chem 2008; 43: 1059–1070.
- 38 Furse KE,Lybrand TP. Three-dimensional models for beta-adrenergic receptor complexes with agonists and antagonists. J Med Chem 2003; 46: 4450–4462.
- 39 Braden MR,Parrish JC,Naylor JC,Nichols DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with Superpotent N-benzyl phenethylamine agonists. Mol Pharmacol 2006; 70: 1956–1964.
- 40 Kim S-K,Gao Z-G,Jeong LS,Jacobson KA. Docking studies of agonists and antagonists suggest an activation pathway of the A3 adenosine receptor. J Mol Graph Model 2006; 25: 562–577.
- 41 A Fiser, F Melo, A. Sali, editor. Comperative protein structure modeling. 2001 ed. New York: Marcel Dekker; 2000. pp 275–312.
- 42 Matthew Jacobson AS. Comparative protein structure modeling and its applications to drug discovery. Annu Rep Med Chem 2004; 39: 259–276.
- 43 Henin J,Maigret B,Tarek M,Escrieut C,Fourmy D,Chipot C. Probing a model of a GPCR/ligand complex in an explicit membrane environment: the human cholecystokinin-1 receptor. Biophys J 2006; 90: 1232–1240.
- 44 Kinsella GK,Rozas I,Watson GW. Computational study of antagonist alpha-1A adrenoceptor complexes-observations of conformational variations on the formation of ligand/receptor complexes. J Med Chem 2006; 49: 501–510.
- 45 Nowak M,Kolaczkowski M,Pawlowski M,Bojarski AJ. Homology modeling of the serotonin 5-HT1A receptor using automated docking of bioactive compounds with defined geometry. J Med Chem 2006; 49: 205–214.
- 46 Patny A,Desai PV,Avery MA. Ligand-supported homology modeling of the human angiotensin II type 1 (AT1) receptor: Insights into the molecular determinants of telmisartan binding. Proteins 2006; 65: 824–842.
- 47 Krystek SR,Kimura SR,Tebben AJ. Modeling and active site refinement for G protein-coupled receptors: application to the β-2 adrenergic receptor. J Comput Aided Mol Des 2006; 20: 463–470.
- 48
Ambrosio C,Molinari P,Fanelli F,Chuman Y,Sbraccia M,Ugur O,Costa T.
Different structural requirements for the constitutive and the agonist-induced activities of the beta2-Adrenergic receptor.
JBiol Chem
2005;
280:
23464–23474.
10.1074/jbc.M502901200 Google Scholar
- 49 Seeber M,DeBenedetti PG,Fanelli F. Molecular dynamics simulations of the ligand-induced chemical information transfer in the 5-HT1A receptor. J Chem Inf Model 2003; 43: 1520–1531.
- 50 Farrens DL,Altenbach C,Yang K,Hubbell WL,Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of Rhodopsin. Science 1996; 274: 768–770.
- 51 Granier S,Kim S,Shafer AM,Ratnala VRP,Fung JJ,Zare RN,Kobilka B. Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J Biol Chem 2007; 282: 13895–13905.
- 52 Han S-J,Hamdan FF,Kim S-K,Jacobson KA,Brichta L,Bloodworth LM,Li JH,Wess J. Pronounced conformational changes following agonist activation of the M3 muscarinic acetylcholine receptor. J Biol Chem 2005; 280: 24870–24879.
- 53 Bu L,Im W,Brooks CL,III. Membrane assembly of simple helix homo-oligomers studied via molecular dynamics simulations. Biophys J 2007; 92: 854–863.
- 54 Im W,Feig M,Brooks CL,III. An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 2003; 85: 2900–2918.
- 55 Tama F,Wriggers W,Brooks CL. Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory. J Mol Biol 2002; 321: 297–305.
- 56 Delarue M,Sanejouand YH. Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol 2002; 320: 1011–1024.
- 57 Krebs WG,Alexandrov V,Wilson CA,Echols N,Yu H,Gerstein M. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins Struct Funct Genet 2002; 48: 682–695.
- 58 Stumpff-Kane AW,Maksimiak K,Lee MS,Feig M. Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Proteins 2008; 70: 1345–1356.
- 59 Altschul SF,Madden TL,Schaffer AA,Zhang J,Zhang Z,Miller W,Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 1997; 25: 3389–3402.
- 60 Boeckmann B,Bairoch A,Apweiler R,Blatter M-C,Estreicher A,Gasteiger E,Martin MJ,Michoud K,O'Donovan C,Phan I,Pilbout S,Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucl Acids Res 2003; 31: 365–370.
- 61 Thompson JD,Higgins DG,Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994; 22: 4673–4680.
- 62 Sali A,Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815.
- 63 Tirion MM. Large amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys Rev Lett 1996; 77: 1905.
- 64 Cavasotto CN,Kovacs JA,Abagyan RA. Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 2005; 127: 9632–9640.
- 65 Sherman W,Day T,Jacobson MP,Friesner RA,Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006; 49: 534–553.
- 66 Friesner RA,Banks JL,Murphy RB,Halgren TA,Klicic JJ,Mainz DT,Repasky MP,Knoll EH,Shelley M,Perry JK,Shaw DE,Francis P,Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47: 1739–1749.
- 67 Eldridge MD,Murray CW,Auton TR,Paolini GV,Mee RP. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 1997; 11: 425–445.
- 68 Leurs R,Bakker RA,Timmerman H,Esch IJPd. The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 2005; 4: 107–120.
- 69 Stark H,Kathmann M,Schlicker E,Schunack W,Schlegel B,Sippl W. Medicinal chemical and pharmacological aspects of imidazole-containing histamine H3 receptor antagonists. Mini Rev Med Chem 2004; 4: 965–977.
- 70 Lovenberg TW,Roland BL,Wilson SJ,Jiang X,Pyati J,Huvar A,Jackson MR,Erlander MG. Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 1999; 55: 1101–1107.
- 71 Visiers I,Ballesteros JA,Weinstein H. Three-dimensional representations of G protein-coupled receptor structures and mechanisms. Methods Enzymol 2002; 343: 329–371.
- 72 Strader CD,Sigal IS,Candelore MR,Rands E,Hill WS,Dixon RA. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem 1988; 263: 10267–10271.
- 73 Zhao C,Sun M,Bennani YL,Gopalakrishnan SM,Witte DG,Miller TR,Krueger KM,Browman KE,Thiffault C,Wetter J,Marsh KC,Hancock AA,Esbenshade TA,Cowart MD. The alkaloid conessine and analogues as potent histamine H3 receptor antagonists. J Med Chem 2008; 51: 5423–5430.
- 74
Boucher Y,Hofman S,Joulin Y,Azérad J.
Effects of BP 2–94, a selective H3-receptor agonist, on blood flow and vascular permeability of the rat mandibular incisor pulp.
Arch Oral Biol
2001;
46:
83–92.
10.1016/S0003-9969(00)00080-7 Google Scholar
- 75 Machin PJ,Hurst DN,Bradshaw RM,Blaber LC,Burden DT,Melarange RA. Beta.1-selective adrenoceptor antagonists. 3. 4-Azolyl linked phenoxypropanolamines. J Med Chem 1984; 27: 503–509.
- 76 Lis R,Morgan TK,Marisca AJ,Gomez RP,Lind JM,Davey DD,Phillips GB,Sullivan ME. Synthesis of novel (aryloxy)propanolamines and related compounds possessing both class II and class III antiarrhythmic activity. J Med Chem 1990; 33: 2883–2891.
- 77 Yao BB,Hutchins CW,Carr TL,Cassar S,Masters JN,Bennani YL,Esbenshade TA,Hancock AA. Molecular modeling and pharmacological analysis of species-related histamine H3 receptor heterogeneity. Neuropharmacology 2003; 44: 773–786.
- 78 Stark H,Sippl W,Ligneau X,Arrang J-M,Ganellin CR,Schwartz J-C,Schunack W. Different antagonist binding properties of human and rat histamine H3 receptors. Bioorg Med Chem Lett 2001; 11: 951–954.
- 79 Lorenzi S,Mor M,Bordi F,Rivara S,Rivara M,Morini G,Bertoni S,Ballabeni V,Barocelli E,Plazzi PV. Validation of a histamine H3 receptor model through structure-activity relationships for classical H3 antagonists. Bioorg Med Chem 2005; 13: 5647–5657.