RNA polymerase II flexibility during translocation from normal mode analysis
Corresponding Author
Michael Feig
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824===Search for more papers by this authorZachary F. Burton
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
Search for more papers by this authorCorresponding Author
Michael Feig
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824===Search for more papers by this authorZachary F. Burton
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
Search for more papers by this authorAbstract
The structural dynamics in eukaryotic RNA polymerase II (RNAPII) is described from computational normal mode analysis based on a series of crystal structures of pre- and post-translocated states with open and closed trigger loops. Conserved modes are identified that involve translocation of the nucleic acid complex coupled to motions of the enzyme, in particular in the clamp and jaw domains of RNAPII. A combination of these modes is hypothesized to be involved during active transcription. The NMA modes indicate furthermore that downstream DNA translocation may occur separately from DNA:RNA hybrid translocation. A comparison of the modes between different states of RNAPII suggests that productive translocation requires an open trigger loop and is inhibited by the presence of an NTP in the active site. This conclusion is also supported by a comparison of the overall flexibility in terms of root mean square fluctuations. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22560_sm_suppmov1.mpg1.9 MB | Supporting Movie 1 |
PROT_22560_sm_suppmov2.mpg2 MB | Supporting Movie 2 |
PROT_22560_sm_suppmov3.mpg1.9 MB | Supporting Movie 3 |
PROT_22560_sm_suppmov4.mpg1.9 MB | Supporting Movie 4 |
PROT_22560_sm_suppmov5.mpg2 MB | Supporting Movie 5 |
PROT_22560_sm_suppmov6.mpg2 MB | Supporting Movie 6 |
PROT_22560_sm_suppmov7.mpg2 MB | Supporting Movie 7 |
PROT_22560_sm_suppmov8.mpg1.9 MB | Supporting Movie 8 |
PROT_22560_sm_suppmov9.mpg2 MB | Supporting Movie 9 |
PROT_22560_sm_suppmov10.mpg2 MB | Supporting Movie 10 |
PROT_22560_sm_suppfig1.pdf164.7 KB | Supporting Figure 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Lee TI,Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet 2000; 34: 77–137.
- 2 Kornberg RD. Eukaryotic transcriptional control. Trends Biochem Sci 1999; 24: M46–M49.
- 3 Borukhov S,Nudler E. RNA polymerase: the vehicle of transcription. Trends Microbiol 2008; 16: 126–134.
- 4 Cramer P,Armache KJ,Baumli S,Benkert S,Brueckner F,Buchen C,Damsma GE,Dengl S,Geiger SR,Jasiak AJ,Jawhari A,Jennebach S,Kamenski T,Kettenberger H,Kuhn CD,Lehmann E,Leike K,Sydow JF,Vannini A. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008; 37: 337–352.
- 5 Hahn S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 2004; 11: 394.
- 6 Cramer P. RNA polymerase II structure: from core to functional complexes. Curr Opin Genet Dev 2004; 14: 218–226.
- 7 Darst SA,Opalka N,Chacon P,Polyakov A,Richter C,Zhang GY,Wriggers W. Conformational flexibility of bacterial RNA polymerase. Proc Natl Acad Sci USA 2002; 99: 4296–4301.
- 8 Coban O,Lamb DC,Zaychikov E,Heumann H,Nienhaus GU. Conformational heterogeneity in RNA polymerase observed by single-pair FRET microscopy. Biophys J 2006; 90: 4605–4617.
- 9 Bar-Nahum G,Epshtein V,Ruckenstein AE,Rafikov R,Mustaev A,Nudler E. A ratchet mechanism of transcription elongation and its control. Cell 2005; 120: 183–193.
- 10 Vassylyev DG,Artsimovitch I. Tracking RNA polymerase, one step at a time. Cell 2005; 123: 977–979.
- 11 Guo Q,Sousa R. Translocation by T7 RNA polymerase: a sensitively poised Brownian ratchet. J Mol Biol 2006; 358: 241–254.
- 12 Thomen P,Lopez PJ,Heslot F. Unravelling the mechanism of RNA-polymerase forward motion by using mechanical force. Phys Rev Lett 2005; 94: 128102.
- 13 Abbondanzieri EA,Greenleaf WJ,Shaevitz JW,Landick R,Block SM. Direct observation of base-pair stepping by RNA polymerase. Nature 2005; 438: 460–465.
- 14 Bai L,Santangelo TJ,Wang MD. Single-molecule analysis of RNA polymerase transcription. Annu Rev Biophys Biomol Struct 2006; 35: 343–360.
- 15 Burton ZF,Feig M,Gong XQ,Zhang CF,Nedialkov YA,Xiong YL. NTP-driven translocation and regulation of downstream template opening by multi-subunit RNA polymerases. Biochem Cell Biol Biochim Biol Cell 2005; 83: 486–496.
- 16 Zhou Y,Navaroli DM,Enuameh MS,Martin CT. Dissociation of halted T7 RNA polymerase elongation complexes proceeds via a forward-translocation mechanism. Proc Natl Acad Sci USA 2007; 104: 10352–10357.
- 17 Yin YW,Steitz TA. The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 2004; 116: 393–404.
- 18 Wang D,Bushnell DA,Westover KD,Kaplan CD,Kornberg RD. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 2006; 127: 941–954.
- 19 Vassylyev DG,Vassylyeva MN,Zhang J,Palangat M,Artsimovitch I,Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 2007; 448: 163.
- 20 Woo HJ,Liu Y,Sousa R. Molecular dynamics studies of the energetics of translocation in model T7 RNA polymerase elongation complexes. Proteins 2008; 73: 1021–1036.
- 21 Van Wynsberghe A,Li GH,Cui Q. Normal-mode analysis suggests protein flexibility modulation throughout RNA polymerase's functional cycle. Biochemistry 2004; 43: 13083–13096.
- 22 Zheng WJ,Brooks BR,Doniach S,Thirumalai D. Network of dynamically important residues in the open/closed transition in polymerases is strongly conserved. Structure 2005; 13: 565–577.
- 23 Delarue M,Sanejouand YH. Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the Elastic Network Model. J Mol Biol 2002; 320: 1011–1024.
- 24 Van Wynsberghe AW,Cui Q. Comparison of mode analyses at different resolutions applied to nucleic acid systems. Biophys J 2005; 89: 2939–2949.
- 25 Fiser A,Do RKG,Sali A. Modeling of loops in protein structures. Protein Sci 2000; 9: 1753–1773.
- 26 Sali A,Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815.
- 27 Brooks BR,Brooks CL,III,Mackerell AD,Jr,Nilsson L,Petrella RJ,Roux B,Won Y,Archontis G,Bartels C,Boresch S,Caflisch A,Caves L,Cui Q,Dinner AR,Feig M,Fischer S,Gao J,Hodoscek M,Im W,Kuczera K,Lazaridis T,Ma J,Ovchinnikov V,Paci E,Pastor RW,Post CB,Pu JZ,Schaefer M,Tidor B,Venable RM,Woodcock HL,Wu X,Yang W,York DM,Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30: 1545–1614.
- 28 MacKerell AD,Jr,Bashford D,Bellott M,Dunbrack JD,Evanseck MJ,Field MJ,Fischer S,Gao J,Guo H,Ha S,Joseph-McCarthy D,Kuchnir L,Kuczera K,Lau FTK,Mattos C,Michnick S,Ngo T,Nguyen DT,Prodhom B,Reiher WE,Roux B,Schlenkrich M,Smith JC,Stote R,Straub J,Watanabe M,Wiorkiewicz-Kuczera J,Yin D,Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998; 102: 3586–3616.
- 29 Brooks BR,Janezic D,Karplus M. Harmonic-analysis of large systems. I. Methodology. J Comput Chem 1995; 16: 1522–1542.
- 30 Tama F,Valle M,Frank J,Brooks CL. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 2003; 100: 9319–9323.
- 31 Tama F,Feig M,Liu J,Brooks CL,Taylor KA. The requirement for mechanical coupling between head and S2 domains in smooth muscle myosin ATPase regulation and its implications for dimeric motor function. J Mol Biol 2005; 345: 837–854.
- 32 Zheng W,Brooks BR,Thirumalai D. Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations. Biophys J 2007; 93: 2289–2299.
- 33 Brooks B,Karplus M. Normal-modes for specific motions of macromolecules—application to the hinge-bending mode of lysozyme. Proc Natl Acad Sci USA 1985; 82: 4995–4999.
- 34 Doruker P,Jernigan RL,Bahar I. Dynamics of large proteins through hierarchical levels of coarse-grained structures. J Comput Chem 2002; 23: 119–127.
- 35 Tama F,Gadea FX,Marques O,Sanejouand YH. Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 2000; 41: 1–7.
- 36 Li GH,Cui Q. A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca2+-ATPase. Biophys J 2002; 83: 2457–2474.
- 37 Brooks BR,Bruccoleri RE,Olafson BD,States DJ,Swaminathan S,Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983; 4: 187–217.
- 38 Foloppe N,MacKerell AD,Jr. All-atom empirical force field for nucleic acids. I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 2000; 21: 86–104.
- 39 MacKerell AD,Jr,Feig M,Brooks CL,III. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004; 25: 1400–1415.
- 40 Humphrey W,Dalke A,Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14: 33.
- 41 Zheng W,Thirumalai D. Coupling between normal modes drives protein conformational dynamics: illustrations using allosteric transitions in myosin II. Biophys J 2009; 96: 2128–2137.
- 42 Yang L-W,Eyal E,Bahar I,Kitao A. Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 2009; 25: 606–614.
- 43 Nicolay S,Sanejouand YH. Functional modes of proteins are among the most robust. Phys Rev Lett 2006; 96: 078104.
- 44 DeLano WL. The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific; 2002.
- 45 Kaplan C,Kornberg R. A bridge to transcription by RNA polymerase. J Biol 2008; 7: 39.
- 46 Yamaguchi Y,Mura T,Chanarat S,Okamoto S,Handa H. Hepatitis delta antigen binds to the clamp of RNA polymerase II and affects transcriptional fidelity. Genes Cells 2007; 12: 863–875.
- 47
Wei WX,Gu JX,Zhu CQ,Sun FY,Dorjsuren D,Lin Y,Murakami S.
Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein.
Cell Res
2003;
13:
111–120.
10.1038/sj.cr.7290155 Google Scholar
- 48 Le TTT,Zhang SJ,Hayashi N,Yasukawa M,Delgermaa L,Murakami S. Mutational analysis of human RNA polymerase II subunit 5 (RPB5): the residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein. J Biochem 2005; 138: 215–224.
- 49 Todone F,Weinzierl ROJ,Brick P,Onesti S. Crystal structure of RPB5, a universal eukaryotic RNA polymerase subunit and transcription factor interaction target. Proc Natl Acad Sci USA 2000; 97: 6306–6310.
- 50 Makino Y,Yogosawa S,Kayukawa K,Coin F,Egly JM,Wang ZX,Roeder RG,Yamamoto K,Muramatsu M,Tamura TA. TATA-binding protein-interacting protein 120, TIP120, stimulates three classes of eukaryotic transcription via a unique mechanism. Mol Cell Biol 1999; 19: 7951–7960.
- 51 Naji S,Bertero MG,Spitalny P,Cramer P,Thomm M. Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement. Nucleic Acids Res 2008; 36: 676–687.
- 52 Donaldson IM,Friesen JD. Zinc stoichiometry of yeast RNA polymerase II and characterization of mutations in the zinc-binding domain of the largest subunit. J Biol Chem 2000; 275: 13780–13788.
- 53 Archambault J,Drebot MA,Stone JC,Friesen JD. Isolation and phenotypic analysis of conditional-lethal. linker-insertion mutations in the gene encoding the largest subunit of RNA polymerase-II in Saccharomyces cerevisiae. Mol Gen Genet 1992; 232: 408–414.
- 54 Malagon F,Kireeva ML,Shafer BK,Lubkowska L,Kashlev M,Strathern JN. Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil. Genetics 2006; 172: 2201–2209.
- 55 Scafe C,Martin C,Nonet M,Podos S,Okamura S,Young RA. Conditional mutations occur predominantly in highly conserved residues of RNA polymerase-II subunits. Mol Cell Biol 1990; 10: 1270–1275.
- 56 Trinh V,Langelier MF,Archambault J,Coulombe B. Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol Mol Biol Rev 2006; 70: 12.
- 57 Vassylyev DG,Vassylyeva MN,Perederina A,Tahirov TH,Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 2007; 448: 157.
- 58 Archambault J,Jansma DB,Kawasoe JH,Arndt KT,Greenblatt J,Friesen JD. Stimulation of transcription by mutations affecting conserved regions of RNA polymerase II. J Bacteriol 1998; 180: 2590–2598.
- 59 Toulokhonov I,Zhang JW,Palangat M,Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 2007; 27: 406–419.
- 60 Kaplan CD,Larsson KM,Kornberg RD. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 2008; 30: 547–556.
- 61 Archambault J,Lacroute F,Ruet A,Friesen JD. Genetic interaction between transcription elongation factor TFIIS and RNA Polymerase-II. Mol Cell Biol 1992; 12: 4142–4152.