Dissecting the molecular mechanism of drosophila odorant receptors through activity modeling and comparative analysis
Sheng Guo
Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
Search for more papers by this authorCorresponding Author
Junhyong Kim
Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104
Department of Biology; 415 S. University Avenue; Philadelphia, PA 19104===Search for more papers by this authorSheng Guo
Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
Search for more papers by this authorCorresponding Author
Junhyong Kim
Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104
Department of Biology; 415 S. University Avenue; Philadelphia, PA 19104===Search for more papers by this authorAbstract
To gain insight into the molecular mechanism of odorant receptors (ORs) in Drosophila species, we developed a Quantitative Structure Activity Relationship (QSAR) model that predicts experimentally measured electrophysiological activities between 24 D. melanogaster ORs and 108 odorants. Although the model is limited by the tested odorants,analyzing the model allowed dissection of specific topological and chemical properties necessary for an odorant to elicit excitatory or inhibitory receptor response. Linear odorants with five to eight nonhydrogen atoms at the main chain and hydrogen-bond acceptor and/or hydrogen-bond donor at its ends were found to stimulate strong excitatory response. A comparative sequence analysis of 90 ORs in 15 orthologous groups identified 15 putative specificity-determining residues (SDRs) and 15 globally conserved residues that we postulate as functionally key residues. Mapping to a model of secondary structure resulted in 14 out of 30 key residues locating to the transmembrane (TM) domains. Twelve residues, including six SDRs and six conserved residues, are located at the extracellular halves of the TM domains. Combining the evidence from the QSAR modeling and the comparative sequence analysis, we hypothesize that the Drosophila ORs accept odorants into a binding pocket located on the extracellular halves of its TM domains. The QSAR modeling suggests that the binding pocket is around 15 Å in depth and about 6 Å in width. Twelve mainly polar or charged key residues, both SDRs and conserved, are located inthis pocket and postulated to distinguish docked odorants via primarily geometry fitting and hydrogen-bond interaction. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22556_sm_suppinfo.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Vosshall LB,Stocker RF. Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 2007; 30: 505–533.
- 2 Hallem EA,Carlson JR. Coding of odors by a receptor repertoire. Cell 2006; 125: 143–160.
- 3 Hallem EA,Ho MG,Carlson JR. The molecular basis of odor coding in the Drosophila antenna. Cell 2004; 117: 965–979.
- 4 Kreher SA,Kwon JY,Carlson JR. The molecular basis of odor coding in the Drosophila larva. Neuron 2005; 46: 445–456.
- 5 Robertson HM,Warr CG,Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 2003; 100( Suppl 2): 14537–14542.
- 6 Lundin C,Käll L,Kreher SA,Kapp K,Sonnhammer EL,Carlson JR,Heijne GV,Nilssona I. Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 2007; 581: 5601–5604.
- 7 Benton R,Sachse S,Michnick SW,Vosshall LB. Atypical membrane topology and heteromeric function of drosophila odorant receptors in vivo. PLo S Biol 2006; 4: e20.
- 8 Guo S,Kim J. Molecular evolution of drosophila odorant receptor genes. Mol Biol Evol 2007; 24: 1198–1207.
- 9 McBride CS. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci USA 2007; 104: 4996–5001.
- 10 Nozawa M,Nei M. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci USA 2007; 104: 7122–7127.
- 11 McBride CS,Arguello JR. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 2007; 177: 1395–1416.
- 12 Mori K,Shepherd GM. Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. Semin Cell Biol 1994; 5: 65–74.
- 13 Kreher SA,Mathew D,Kim J,Carlson JR. Translation of sensory input into behavioral output via an olfactory system. Neuron 2008; 59: 110–124.
- 14
Dyson GM.
The scientific basis of odour.
Chem Ind
1938;
57:
647–651.
10.1002/jctb.5000572802 Google Scholar
- 15 Wright RH. Odor and molecular vibration: neural coding of olfactory information. J Theor Biol 1977; 64: 473–502.
- 16 Turin L. A spectroscopic mechanism for primary olfactory reception. Chem Senses 1996; 21: 773–791.
- 17 Turin L. A method for the calculation of odor character from molecular structure. J Theor Biol 2002; 216: 367–385.
- 18 Takane SY,Mitchell JB. A structure-odour relationship study using EVA descriptors and hierarchical clustering. Org Biomol Chem 2004; 2: 3250–3255.
- 19 Brookes JC,Hartoutsiou F,Horsfield AP,Stoneham AM. Could humans recognize odour by phonon assisted tunneling. Phys Rev Lett 2007; 98: 038101.
- 20 Hall SE,Floriano WB,Vaidehi N,Goddard WA,III. Predicted 3-D structures for mouse I7 and rat I7 olfactory receptors and comparison of predicted odor recognition profiles with experiment. Chem Senses 2004; 29: 595–616.
- 21 Floriano WB,Vaidehi N,William A. Goddard I. Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors. Chem Senses 2004; 29: 269–290.
- 22 Hummel P,Vaidehi N,Floriano WB,Hall SE,Goddard WA,III. Test of the binding threshold hypothesis for olfactory receptors: explanation of the differential binding of ketones to the mouse and human orthologs of olfactory receptor 912–93. Protein Sci 2005; 14: 703–710.
- 23 Crosby MA,Goodman JL,Strelets VB,Zhang P,Gelbart WM. FlyBase: genomes by the dozen. Nucleic Acids Res 2007; 35(Database issue): D486–D491.
- 24 Edgar RC. MUSCLE. multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792–1797.
- 25 Guindon S,Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52: 696–704.
- 26 Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JAJ,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,Komaromi I,Martin RL,Fox DJ,Keith T,Al-Laham MA,Peng CY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW, CG,Pople JA. Gaussian 03: Gaussian, Inc; 2004.
- 27 Willett P. Chemical similarity searching. J Chem Inf Comput Sci 1998; 38: 983–996.
- 28 Pastor M,Cruciani G,McLay I,Pickett S,Clementi S. GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 2000; 43: 3233–3243.
- 29 Fontaine F,Pastor M,Sanz F. Incorporating Molecular shape into the alignment-free GRid-INdependent descriptors. J Med Chem 2004; 47: 2805–2815.
- 30 Boulesteix AL,Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform 2007; 8: 32–44.
- 31 Wold S,Martens H,Wold H. Lecture notes in mathematics. A Ruhe, B Kagstrom, editors. Heidelberg: Springer-Verlag; 1983. pp 286–293.
- 32 Eriksson L,Johansson E. Mulpivariate design and modeling in QSAR. Chmom Intell Lab 1996; 34: 1–19.
- 33 Mirny L,Gelfand M. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. J Mol Biol 2002; 321: 7–20.
- 34
Li L,Shakhnovich EI,Mirny LA.
Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases.
Proc Natl Acad Sci USA
2003;
100:
4463–4468.
10.1073/pnas.0737647100 Google Scholar
- 35 Kall L,Krogh A,Sonnhammer EL. An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 2005; 21( Suppl 1): i251–i257.
- 36 Gardiner A,Butlin RK,Jordan WC,Ritchie MG. Sites of evolutionary divergence differ between olfactory and gustatory receptors of Drosophila. Biol Lett 2009; 5: 244–247.
- 37 Bordo D,Argos P. Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Biol 1991; 217: 721–729.
- 38 Sokal RR,Rohlf JF. Biometry. San Francisco: W. H. Freeman; 1994. p 880.
- 39 Kier LB,Hall LH. Molecular structure description. San Diego: Academic Press; 1999.
- 40 Legendre P. Comparison of permutation methods for the partial correlation and partial mantel tests. J Stat Comput Simul 2000; 67: 37–73.
- 41 Lapinsh M,Prusis P,Lundstedt T,Wikberg JE. Proteochemometrics modeling of the interaction of amine G-protein coupled receptors with a diverse set of ligands. Mol Pharmacol 2002; 61: 1465–1475.
- 42 Lapinsh M,Prusis P,Uhlen S,Wikberg JES. Improved approach for proteochemometrics modeling: application to organic compound—amine G protein-coupled receptor interactions. Bioinformatics 2005; 21: 4289–4296.
- 43 Lapinsh M,Prusis P,Petrovska R,Uhlen S,Mutule I,Veiksina S,Wikberg JE. Proteochemometric modeling reveals the interaction site for Trp9 modified alpha-MSH peptides in melanocortin receptors. Proteins 2007; 67: 653–660.
- 44 Chang C-C,Lin C-J. LIBSVM, a library for support machines. Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. (Accessed on 7 August 2009), 2001.
- 45 Man O,Gilad Y,Lancet D. Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 2004; 13: 240–254.
- 46 Emes RD,Beatson SA,Ponting CP,Goodstadt L. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res 2004; 14: 591–602.
- 47 Abaffy T,Malhotra A,Luetje CW. The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J Biol Chem 2007; 282: 1216–1224.
- 48 Gaillard I,Rouquier S,Chavanieu A,Mollard P,Giorgi D. Amino-acid changes acquired during evolution by olfactory receptor 912–93 modify the specificity of odorant recognition. Hum Mol Genet 2004; 13: 771–780.
- 49 Katada S,Hirokawa T,Oka Y,Suwa M,Touhara K. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 2005; 25: 1806–1815.
- 50 Keller A,Vosshall LB. A psychophysical test of the vibration theory of olfaction. Nat Neurosci 2004; 7: 337–338.
- 51 Khafizov K,Anselmi C,Menini A,Carloni P. Ligand specificity of odorant receptors. J Mol Model 2007; 13: 401–409.
- 52 Lai PC,Singer MS,Crasto CJ. Structural activation pathways from dynamic olfactory receptor-odorant interactions. Chem Senses 2005; 30: 781–792.
- 53 Schmiedeberg K,Shirokova E,Weber H-P,Schilling B,Meyerhof W,Krautwurst D. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J Struct Biol 2007; 159: 400–412.
- 54 Stary A,Suwattanasophon C,Wolschann P,Buchbauer G. Differences in (-)citronellal binding to various odorant receptors. Biochem Biophys Res Commun 2007; 361: 941–945.