Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: Effect of cellulose nanocrystal and postcure temperature
Zhaozhe Yang
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 China
Department of Chemical Engineering, Université Laval, Québec City, Québec, G1V0A6 Canada
Search for more papers by this authorGuomin Wu
Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042 China
Search for more papers by this authorCorresponding Author
Siqun Wang
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: S. Wang (E-mail: [email protected]) or M. Xu (E-mail: [email protected]) or X. Feng (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Min Xu
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 China
Correspondence to: S. Wang (E-mail: [email protected]) or M. Xu (E-mail: [email protected]) or X. Feng (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Xinhao Feng
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 China
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: S. Wang (E-mail: [email protected]) or M. Xu (E-mail: [email protected]) or X. Feng (E-mail: [email protected])Search for more papers by this authorZhaozhe Yang
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 China
Department of Chemical Engineering, Université Laval, Québec City, Québec, G1V0A6 Canada
Search for more papers by this authorGuomin Wu
Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042 China
Search for more papers by this authorCorresponding Author
Siqun Wang
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: S. Wang (E-mail: [email protected]) or M. Xu (E-mail: [email protected]) or X. Feng (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Min Xu
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 China
Correspondence to: S. Wang (E-mail: [email protected]) or M. Xu (E-mail: [email protected]) or X. Feng (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Xinhao Feng
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, 150040 China
Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: S. Wang (E-mail: [email protected]) or M. Xu (E-mail: [email protected]) or X. Feng (E-mail: [email protected])Search for more papers by this authorABSTRACT
Cellulose nanocrystal (CNC) reinforced methacrylate (MA) resin nanocomposite was prepared by 3D stereolithography printing. A postcure process, where the printed nanocomposite was heat-treated under different temperatures, was applied to improve the property of the printed nanocomposites. To investigate the effect of CNC and postcure temperature on the kinetic behavior of the postpolymerization of printed nanocomposites, Fourier-transform infrared spectroscopy and differential scanning calorimetry measurement of the printed nanocomposites before and after postcure were analyzed. The postpolymerization of MA nanocomposites was promoted at a postcure temperature of 140 °C for the printed 0.5% CNC/MA nanocomposites compared to the printed MA resin. The addition of CNC retarded the polymerization of MA resin during 3D printing, resulting in poorer mechanical properties of the printed nanocomposites compared to the printed MA resin. However, after postcure, the mechanical properties of the printed nanocomposites were improved by the postpolymerization of the MA nanocomposites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 935–946
REFERENCES
- 1 K. K. Baikerikar, A. B. Scranton, Polymer 2001, 42, 431.
- 2 S. Baudis, C. Heller, R. Liska, J. Stampfl, H. Bergmeister, G. Weigel, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2664.
- 3 T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel, Biomaterials 2014, 35, 49.
- 4 N. J. Castro, J. O'Brien, L. G. Zhang, Nanoscale 2015, 7, 14010.
- 5 A. Chiappone, F. Bella, J. R. Nair, G. Meligrana, R. Bongiovanni, C. Gerbaldi, ChemElectroChem 2014, 1, 1350.
- 6 C. Esposito Corcione, A. Greco, A. Maffezzoli, J. Appl. Polym. Sci. 2004, 92, 3484.
- 7 U. Gleißner, S. Sherman, C. Megnin, H. Zappe, T. Hanemann, Proc. Eng. 2015, 120, 3.
- 8 C. Heller, M. Schwentenwein, G. Russmueller, F. Varga, J. Stampfl, R. Liska, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 6941.
- 9 J. B. Hutchison, K. S. Anseth, Macromol. Theor. Simul. 2001, 10, 600.
- 10 D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou, G. J. Cheng, Nanotechnology 2015, 26, 434003.
- 11 D. Karalekas, K. Antoniou, J. Mater. Process. Technol. 2004, 153, 526.
- 12 K. Kim, W. Zhu, X. Qu, C. Aaronson, W. R. McCall, S. Chen, D. J. Sirbuly, ACS Nano 2014, 8, 9799.
- 13 K. i. Koseki, H. Sakamaki, K.-M. Jeong, J. Photopolym. Sci. Technol. 2013, 26, 567.
- 14 F. Kramer, D. Klemm, D. Schumann, N. Heßler, F. Wesarg, W. Fried, D. Stadermann, Macromol. Symp. 2006, 244, 136.
- 15 X. Feng, Z. Yang, S. Chmely, Q. Wang, S. Wang, Y. Xie, Carbohyd. Polym. 2017, 169, 272.
- 16 L. L. Lebel, B. Aissa, M. A. E. Khakani, D. Therriault, Adv. Mater. 2010, 22, 592.
- 17 L. Lecamp, B. Youssef, C. Bunel, P. Lebaudy, Polymer 1999, 40, 6313.
- 18 N. J. Lin, L. O. Bailey, M. L. Becker, N. R. Washburn, L. A. Henderson, Acta Biomater. 2007, 3, 163.
- 19 T. Marino, O. Y. Long, D. Neckers, Ind. Eng. Chem. Res. 1995, 34, 4549.
- 20 S. K. Moon, Y. E. Tan, J. Hwang, Y.-J. Yoon, Int. J. Precis. Eng. Manuf. 2014, 1, 223.
- 21 T. Ozaki, T. Koto, T. V. Nguyen, H. Nakanishi, T. Norisuye, Q. Tran-Cong-Miyata, Polymer 2014, 55, 1809.
- 22 P. Patirupanusara, W. Suwanpreuk, T. Rubkumintara, J. Suwanprateeb, Polym. Test. 2007, 26, 519.
- 23
J. Schultz,
J. Bhatt,
R. Chartoff,
R. Pogue,
J. Ullett, J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 1183.
10.1002/(SICI)1099-0488(19990601)37:11<1183::AID-POLB12>3.0.CO;2-F CAS Web of Science® Google Scholar
- 24 T. F. Scott, W. D. Cook, J. S. Forsythe, Polymer 2002, 43, 5839.
- 25 J. W. Stansbury, M. J. Idacavage, Dent. Mater. 2016, 32, 54.
- 26 J. Suwanprateeb, W. Suvannapruk, R. Sanngam, Polym. Test. 2008, 27, 711.
- 27 D. Truffier-Boutry, S. Demoustier-Champagne, J. Devaux, J.-J. Biebuyck, M. Mestdagh, P. Larbanois, G. Leloup, Dent. Mater. 2006, 22, 405.
- 28 B. Wetzel, P. Rosso, F. Haupert, K. Friedrich, Eng. Fract. Mech. 2006, 73, 2375.
- 29 K. Xu, Y. Chen, J. Manuf. Sci. E.-T. ASME 2015, 137, 031014. 031014-(1–9).
- 30 H. S. Yu, T. Yamashita, K. Horie, Macromolecules 1996, 29, 1144.
- 31 X. Feng, Z. Yang, S. S. H. Rostom, M. Dadmun, S. Wang, Q. Wang, Y. Xie, Mater. Des. 2018, 138, 62.
- 32 Z. Zhang, T. Xiao, H. Al-Megren, S. A. Aldrees, M. Al-Kinany, V. L. Kuznetsov, M. L. Kuznetsov, P. P. Edwards, Chem. Commun. 2017, 53, 4026.
- 33 T. N. Tran, U. Paul, J. A. Heredia-Guerrero, I. Liakos, S. Marras, A. Scarpellini, F. Ayadi, A. Athanassiou, I. S. Bayer, Chem. Eng. J. 2016, 287, 196.
- 34 R. L. Quirino, R. C. Larock, J. Appl. Polym. Sci. 2009, 112, 2033.
- 35 R. L. Quirino, J. Woodford, R. C. Larock, J. Appl. Polym. Sci. 2012, 124, 1520.
- 36 S. Chen, S.-H. Hsu, M.-C. Wu, W. F. Su, J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 301.
- 37 Y. Fu, W.-H. Zhong, Thermochim. Acta 2011, 516, 58.
- 38 P. P. Vijayan, D. Puglia, P. Jyotishkumar, J. M. Kenny, S. Thomas, J. Mater. Sci. 2012, 47, 5241.
- 39 J. Wan, B. G. Li, H. Fan, Z. Y. Bu, C. J. Xu, Thermochim. Acta 2010, 510, 46.
- 40 O. Yalukova, I. Sárady, Compos. Sci. Technol. 2006, 66, 1289.
- 41 E. Nadim, H. Bouhendi, F. Ziaee, R. Bazhrang, Polym. Bull. 2012, 68, 405.
- 42 J. Gao, D. Kong, S. Li, Polym. Compos. 2010, 31, 60.
- 43 S. Vyazovkin, A. Mititelu, N. Sbirrazzuoli, Macromol. Rapid. Commun. 2003, 24, 1060.
- 44 J. Abenojar, N. Encinas, J. C. D. Real, M. A. Martínez, Thermochim. Acta 2014, 575, 144.
- 45 H. B. And, R. Narain, J. Phys. Chem. B 2007, 111, 11120.
- 46 Y.-L. Liu, Z.-Q. Cai, X. Wen, P. Pi, D. Zheng, J. Cheng, Z. Yang, Thermochim. Acta 2011, 513, 88.
- 47 J. Abenojar, M. A. MartãNez, M. Pantoja, F. Velasco, J. C. D. Real, J. Adhes. 2012, 88, 418.
- 48 H. Xie, B. Liu, Z. Yuan, J. Shen, R. Cheng, J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 3701.
- 49 W. Wang, L. Xu, F. Liu, X. Li, L. Xing, J. Mater. Chem. A 2013, 1, 776.
- 50 K. Morigaki, H. Schönherr, T. Okazaki, Langmuir 2007, 23, 12254.
- 51 P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Science 2007, 318, 80.
- 52 K. Littunen, U. Hippi, T. Saarinen, J. Seppälä, Carbohyd. Polym. 2013, 91, 183.
- 53 O. Becker, R. Varley, G. Simon, Polymer 2002, 43, 4365.