Tough and Enzyme-Degradable Hydrogels
Ginger Chen
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
Search for more papers by this authorShadi Taghavi
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
Search for more papers by this authorDale Marecak
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
Search for more papers by this authorCorresponding Author
Brian G. Amsden
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
E-mail: [email protected]Search for more papers by this authorGinger Chen
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
Search for more papers by this authorShadi Taghavi
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
Search for more papers by this authorDale Marecak
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
Search for more papers by this authorCorresponding Author
Brian G. Amsden
Department of Chemical Engineering, Queen's University Kingston, Kingston, ON, K7L 3N6 Canada
E-mail: [email protected]Search for more papers by this authorAbstract
Mechanically robust hydrogels that degrade only via cell action have potential as scaffolds for the generation of load-bearing soft connective tissue. This study demonstrates that terminally acrylated 4-arm-poly(ethylene glycol)-block-oligo(trimethylene carbonate) (4a-PEG-(TMC)n) can be readily reacted with a collagenase-degradable bis-cysteine peptide to form hydrogels. The inclusion of the TMC blocks renders the hydrogels mechanically tough when tested under compression, with modulus and toughness values within the range of those of articular cartilage. Moreover, the hydrogels formed are resistant to degradation by hydrolysis in the absence of collagenase but degrade via surface erosion in the presence of collagenase. The strategy employed to form these hydrogels is readily tailored to create a variety of tough, enzyme-degradable hydrogels of varying mechanical and degradation properties.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1Y. Jiang, J. Chen, C. Deng, E. J. Suuronen, Z. Zhong, Biomaterials 2014, 35, 4969.
- 2P. M. Kharkar, K. L. Kiick, A. M. Kloxin, Chem. Soc. Rev. 2013, 42, 7335.
- 3A. Vashist, Y. K. Gupta, S. Ahmad, J. Mater. Chem. B 2014, 2, 147.
- 4A. K. A. Silva, C. Richard, M. Bessodes, D. Scherman, O.-W. Merten, Biomacromolecules 2009, 10, 9.
- 5X. Liu, X. Chen, M. X. Chua, Z. Li, X. J. Loh, Y.-L. Wu, Adv. Healthcare Mater. 2017, 2, 1700159.
- 6L. I. F. Moura, A. M. A. Dias, E. Carvalho, H. C. de Sousa, Acta Biomater. 2013, 9, 7093.
- 7J. S. Boateng, K. H. Matthews, H. N. E. Stevens, G. M. Eccleston, J. Pharm. Sci. 2008, 97, 2892.
- 8J. W. S. Hayami, S. D. Waldman, B. G. Amsden, B. G. Amsden, Biomacromolecules 2013, 14, 4236.
- 9Y. Xiao, E. A. Friis, S. H. Gehrke, Tissue Eng., Part B 2013, 19, 403.
- 10D.-A. Wang, S. Varghese, B. Sharma, I. Strehin, S. Fermanian, J. Gorham, D. H. Fairbrother, B. Cascio, J. H. Elisseeff, Nat. Mater. 2007, 6, 385.
- 11B. Sharma, S. Fermanian, M. Gibson, S. Unterman, D. A. Herzka, B. Cascio, J. Coburn, A. Y. Hui, N. Marcus, G. E. Gold, J. H. Elisseeff, Sci. Transl. Med. 2013, 5, 167ra6.
- 12C. G. Armstrong, V. C. Mow, J. Bone Jt. Surg. Am. 1982, 64, 88.
- 13J. M. Mansour, in Kinesiology: The Mechanics and Pathomechanics of Human Movements (Ed: C. A. Oatis), Lippincott, Williams and Wilkins, Baltimore 2004, Ch. 5.
- 14J. B. Finlay, R. U. Repo, Med. Biol. Eng. Comput. 1979, 17, 397.
- 15V. P. Torchilin, Pharm. Res. 2007, 24, 1.
- 16Z. Yang, A. Jeffrey, A. Galloway, H. Yu, Langmuir 1999, 15, 8405.
- 17W. R. Gombotz, W. Guanghui, T. A. Horbett, A. S. Hoffman, J. Biomed. Mater. Res. 1991, 25, 1547.
- 18A. Sawhney, C. Pathak, J. Hubbell, Macromolecules 1993, 26, 581.
- 19S. Jo, H. Shin, A. K. Shung, J. P. Fisher, A. G. Mikos, Macromolecules 2001, 34, 2839.
- 20Y. S. Jo, J. Gantz, J. A. Hubbell, M. P. Lutolf, Soft Matter 2009, 5, 440.
- 21B. Amsden, G. Misra, M. Marshall, N. Turner, J. Pharm. Sci. 2008, 97, 860.
- 22Z. Li, Z. Zhang, K. L. Liu, X. Ni, J. Li, Biomacromolecules 2012, 13, 3977.
- 23M. P. Lutolf, G. P. Raeber, A. H. Zisch, N. Tirelli, Adv. Mater. 2003, 15, 888.
- 24G. Xu, X. Wang, C. Deng, X. Teng, E. J. Suuronen, Z. Shen, Z. Zhong, Acta Biomater. 2015, 15, 55.
- 25A. S. Gobin, J. L. West, FASEB J. 2002, 16, 751.
- 26S. Khetan, J. S. Katz, J. A. Burdick, Soft Matter 2009, 5, 1601.
- 27B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen, J. L. West, Biomaterials 2001, 22, 3045.
- 28C. N. Salinas, K. S. Anseth, Biomaterials 2008, 29, 2370.
- 29C. Adeloew, T. Segura, J. A. Hubbell, P. Frey, Biomaterials 2008, 29, 314.
- 30S. B. Anderson, C.-C. Lin, D. V. Kuntzler, K. S. Anseth, Biomaterials 2011, 32, 3564.
- 31D. P. Nair, M. Podgorski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, C. N. Bowman, Chem. Mater 2013, 26, 724.
- 32D. Elbert, J. Hubbell, Biomacromolecules 2001, 2, 430.
- 33M. P. Lutolf, J. A. Hubbell, Biomacromolecules 2003, 4, 713.
- 34P. van de Wetering, A. T. Metters, R. G. Schoenmakers, J. A. Hubbell, J Controlled Release 2005, 102, 619.
- 35M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury, C. J. Hawker, Chem. Commun. 2006, 2774, DOI: 10.1039/b603438a.
- 36E. Y. Tokuda, J. L. Leight, K. S. Anseth, Biomaterials 2014, 35, 4310.
- 37J. Patterson, J. A. Hubbell, Biomaterials 2010, 31, 7836.
- 38H. Nagase, G. B. Fields, Biopolymers 1996, 40, 399.
10.1002/(SICI)1097-0282(1996)40:4<399::AID-BIP5>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- 39K. J. Zhu, R. W. Hendren, K. Jensen, C. G. Pitt, Macromolecules 1991, 24, 1736.
- 40A. Pego, A. Poot, D. Grijpma, J. Feijen, Macromol. Biosci. 2002, 2, 411.
- 41L. Timbart, M. Y. Tse, S. C. Pang, O. Babasola, B. G. Amsden, Macromol. Biosci. 2009, 9, 786.
- 42S. Sharifpoor, B. Amsden, Eur. J. Pharm. Biopharm. 2007, 65, 336.
- 43B. G. Amsden, L. Timbart, D. Marecak, R. Chapanian, M. Y. Tse, S. C. Pang, J. Controlled Release 2010, 145, 109.
- 44R. Chapanian, M. Y. Tse, S. C. Pang, B. G. Amsden, Biomaterials 2009, 30, 295.
- 45C. T. McKee, J. A. Last, P. Russell, C. J. Murphy, Tissue Eng., Part B 2011, 17, 155.
- 46G. Schwach, J. Coudane, R. Engel, M. Vert, Polym. Bull. 1994, 32, 617.
- 47M. Sepulchre, M. O. Sepulchre, M. A. Dourges, M. Neblai, Macromol. Chem. Phys. 2000, 201, 1405.
- 48O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 2004, 104, 6147.
- 49J. S. Cho, B. S. Kim, H. Hyun, J. Y. Youn, M. S. Kim, J. H. Ko, Y. H. Park, G. Khang, H. B. Lee, Polymer 2008, 49, 1777.
- 50B. G. Amsden, M. Y. Tse, N. D. Turner, D. K. Knight, S. C. Pang, Biomacromolecules 2006, 7, 365.
- 51M. Lang, R. Wong, C. Chu, J. Polym. Sci., Part A-1: Polym. Chem. 2002, 40, 1127.
- 52L. R. G. Treloar, The Physics of Rubber Elasticity, 3rd ed., Oxford University Press, Oxford 1975.
- 53H. N. Chia, M. L. Hull, J. Orthop. Res. 2008, 26, 951.
- 54E. A. Makris, P. Hadidi, K. A. Athanasiou, Biomaterials 2011, 32, 7411.
- 55E. Zant, D. W. Grijpma, Biomacromolecules 2016, 17, 1582.
- 56C. B. Rodell, N. N. Dusaj, C. B. Highley, J. A. Burdick, Adv. Mater. 2016, 28, 8419.
- 57M. K. Jaiswal, J. R. Xavier, J. K. Carrow, P. Desai, D. Alge, A. K. Gaharwar, ACS Nano 2015, 10, 246.
- 58J. Li, W. R. K. Illeperuma, Z. Suo, J. J. Vlassak, ACS Macro Lett. 2014, 3, 520.
- 59Y. Zhang, Z. Fan, C. Xu, S. Fang, X. Liu, X. Li, Eur. Polym. J. 2015, 72, 717.
- 60V. X. Truong, M. P. Ablett, S. M. Richardson, J. A. Hoyland, A. P. Dove, J. Am. Chem. Soc. 2015, 137, 1618.