Volume 9, Issue 5 pp. 521-532
Full Article

Fully unsupervised inter-individual IR spectral histology of paraffinized tissue sections of normal colon

Thi Nguyet Que Nguyen

Thi Nguyet Que Nguyen

Université de Reims Champagne-Ardenne, Equipe MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Reims, France

CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France

Search for more papers by this author
Pierre Jeannesson

Pierre Jeannesson

Université de Reims Champagne-Ardenne, Equipe MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Reims, France

CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France

Search for more papers by this author
Audrey Groh

Audrey Groh

Progression tumorale et microenvironnement, Approches translationnelles et Epidémiologie, EA 3430, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg (UdS), Strasbourg, France

Search for more papers by this author
Olivier Piot

Olivier Piot

Université de Reims Champagne-Ardenne, Equipe MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Reims, France

CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France

Search for more papers by this author
Dominique Guenot

Dominique Guenot

Progression tumorale et microenvironnement, Approches translationnelles et Epidémiologie, EA 3430, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg (UdS), Strasbourg, France

Search for more papers by this author
Cyril Gobinet

Corresponding Author

Cyril Gobinet

Université de Reims Champagne-Ardenne, Equipe MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Reims, France

CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France

Corresponding author: e-mail: [email protected]

Search for more papers by this author
First published: 12 February 2016
Citations: 21

Abstract

In label-free Fourier-transform infrared histology, spectral images are individually recorded from tissue sections, pre-processed and clustered. Each single resulting color-coded image is annotated by a pathologist to obtain the best possible match with tissue structures revealed after Hematoxylin-Eosin staining. However, the main limitations of this approach are the empirical choice of the number of clusters in unsupervised classification, and the marked color heterogeneity between the clustered spectral images. Here, using normal murine and human colon tissues, we developed an automatic multi-image spectral histology to simultaneously analyze a set of spectral images (8 images mice samples and 72 images human ones). This procedure consisted of a joint Extended Multiplicative Signal Correction (EMSC) to numerically deparaffinize the tissue sections, followed by an automated joint K-Means (KM) clustering using the hierarchical double application of Pakhira-Bandyopadhyay-Maulik (PBM) validity index. Using this procedure, the main murine and human colon histological structures were correctly identified at both the intra- and the inter-individual levels, especially the crypts, secreted mucus, lamina propria and submucosa. Here, we show that batched multi-image spectral histology procedure is insensitive to the reference spectrum but highly sensitive to the paraffin model of joint EMSC. In conclusion, combining joint EMSC and joint KM clustering by double PBM application allows to achieve objective and automated batched multi-image spectral histology.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.