Preparation of amino acid chiral ionic liquid and visual chiral recognition of glutamine and phenylalanine enantiomers
Luzheng Dong
College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
Contribution: Investigation, Methodology, Writing - original draft
Search for more papers by this authorJun Wu
College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
Contribution: Validation
Search for more papers by this authorCorresponding Author
Xiashi Zhu
College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
Correspondence
Xiashi Zhu, College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225002, China.
Email: [email protected]
Contribution: Conceptualization, Methodology, Writing - review & editing, Funding acquisition
Search for more papers by this authorLuzheng Dong
College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
Contribution: Investigation, Methodology, Writing - original draft
Search for more papers by this authorJun Wu
College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
Contribution: Validation
Search for more papers by this authorCorresponding Author
Xiashi Zhu
College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
Correspondence
Xiashi Zhu, College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225002, China.
Email: [email protected]
Contribution: Conceptualization, Methodology, Writing - review & editing, Funding acquisition
Search for more papers by this authorAbstract
In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.
Open Research
DATA AVAILABILITY STATEMENT
All relevant data are within the paper.
Supporting Information
Filename | Description |
---|---|
chir23665-sup-0001-Supp_Info.docxWord 2007 document , 821.2 KB |
Figure S1. The 1H NMR spectra of [EMIM][L-Phe]. Figure S2. The 13C NMR spectra of [EMIM][L-Phe]. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Shili Q, Yangyang S, Xudong H, et al. Chiral fluorescence recognition of glutamine enantiomers by a modified Zr-based MOF based on solvent-assisted ligand incorporation. RSC Adv. 2021; 11(59): 37584-37594. doi:10.1039/D1RA06857A
- 2Cai P, Gao Z, Yin X, Luo Y, Zhao X, Pan Y. Facile enantioseparation and recognition of mandelic acid and its derivatives in self-assembly interaction with chiral ionic liquids. J Sep Sci. 2019; 42(23): 3589-3598. doi:10.1002/jssc.201900584
- 3Jafar-Nezhad Ivrigh Z, Fahimi-Kashani N, Morad R, Jamshidi Z, Hormozi-Nezhad MR. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe. Anal Chim Acta. 2022; 1231:340386. doi:10.1016/j.aca.2022.340386
- 4Jafri F, Seong G, Jang T, et al. L-glutamine for sickle cell disease: more than reducing redox. Ann Hematol. 2022; 101(8): 1645-1654. doi:10.1007/s00277-022-04867-y
- 5Shao H, Dong L, Feng Y, Wang C, Tong H. The protective effect of L-glutamine against acute cantharidin-induced cardiotoxicity in the mice. BMC Pharmacol Toxicol. 2020; 21(1): 71. doi:10.1186/s40360-020-00449-8
- 6Luo L, Li Y, Shan H, et al. L-Glutamine protects mouse brain from ischemic injury via up-regulating heat shock protein 70. CNS Neurosci Ther. 2019; 25(9): 1030-1041. doi:10.1111/cns.13184
- 7Zang H, Yao S, Luo Y, Tang D, Song H. Complex-precipitation using functionalized chiral ionic liquids with L-proline anion and chromatographic analysis for enantioseparation of racemic amino acids. Chirality. 2018; 30(11): 1182-1194. doi:10.1002/chir.23011
- 8Hou H, Tang S, Liu M, et al. An electrochemical sensor based on metal–organic framework–chiral ionic liquid composites for the enantiorecognition of tryptophan enantiomers. New J Chem. 2023; 47(18): 8558-8565. doi:10.1039/D3NJ00869J
- 9Fahimi-Kashani N, Jafar-Nezhad Ivrigh Z, Bigdeli A, Hormozi-Nezhad MR. Visual recognition of tryptophan enantiomers using chiral self assemblies of quantum dots. ACS Appl Nano Mater. 2022; 5(1): 1460-1471. doi:10.1021/acsanm.1c02928
- 10Yang K, Jia P, Hou J, Zhao S, Wang L. An ingenious turn-on ratiometric fluorescence sensor for sensitive and visual detection of tetracyclines. Food Chem. 2022; 396:133693. doi:10.1016/j.foodchem.2022.133693
- 11Ma X, Du Y, Zhu X, Yang J. Visual chiral recognition of aromatic amino acids with (S)-mandelic acid-based ionic liquids via complexation. Talanta. 2020; 217:121083. doi:10.1016/j.talanta.2020.121083
- 12Cao Y, Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res. 2014; 53(20): 8651-8664. doi:10.1021/ie5009597
- 13Barulli L, Mezzetta A, Brunetti B, Guazzelli L, Vecchio Ciprioti S, Ciccioli A. Evaporation thermodynamics of the tetraoctylphosphonium bis (trifluoromethansulfonyl)imide([P8888]NTf2) and tetraoctylphosphonium nonafluorobutane-1-sulfonate ([P8888]NFBS) ionic liquids. J Mol Liq. 2021; 333:115892. doi:10.1016/j.molliq.2021.115892
- 14Kazemiabnavi S, Zhang Z, Thornton K, Banerjee S. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J Phys Chem B. 2016; 120(25): 5691-5702. doi:10.1021/acs.jpcb.6b03433
- 15Chiappe C, Rodriguez Douton MJ, Mezzetta A, et al. Exploring and exploiting different catalytic systems for the direct conversion of cellulose into levulinic acid. New J Chem. 2018; 42(3): 1845-1852. doi:10.1039/C7NJ04707J
- 16Jónsson E. Ionic liquids as electrolytes for energy storage applications – a modelling perspective. Energy Storage Mater. 2020; 25: 827-835. doi:10.1016/j.ensm.2019.08.030
- 17Egorova KS, Gordeev EG, Ananikov VP. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev. 2017; 117(10): 7132-7189. doi:10.1021/acs.chemrev.6b00562
- 18Blasius J, Zaby P, Hollóczki O, Kirchner B. Recognition in chiral ionic liquids: the achiral cation makes the difference! J Org Chem. 2022; 87(3): 1867-1873. doi:10.1021/acs.joc.1c00939
- 19Zullo V, Iuliano A, Guazzelli L. Sugar-based ionic liquids: multifaceted challenges and intriguing potential. Molecules. 2021; 26(7): 2052. doi:10.3390/molecules26072052
- 20Wu Y, Sun X, Wang H, Shen J, Ke Y. Pore size control of monodisperse mesoporous silica particles with alkyl imidazole ionic liquid templates for high performance liquid chromatography applications. Colloids Surf A Physicochem Eng Asp. 2022; 637:128200. doi:10.1016/j.colsurfa.2021.128200
- 21Kimaru IW, Morris L, Vassiliou J, Savage N. Synthesis and evaluation of l-phenylalanine ester-based chiral ionic liquids for GC stationary phase ability. J Mol Liq. 2017; 237: 193-200. doi:10.1016/j.molliq.2017.04.079
- 22Salido-Fortuna S, Marina ML, Castro-Puyana M. Enantiomeric determination of econazole and sulconazole by electrokinetic chromatography using hydroxypropyl-β-cyclodextrin combined with ionic liquids based on L-lysine and L-glutamic acid. J Chromatogr A. 2020; 1621:461085. doi:10.1016/j.chroma.2020.461085
- 23Wahl J, Holzgrabe U. Capillary electrophoresis separation of phenethylamine enantiomers using amino acid based ionic liquids. J Pharm Biomed Anal. 2018; 148: 245-250. doi:10.1016/j.jpba.2017.10.010
- 24Kaur N, Chopra HK. Synthesis and applications of carbohydrate based chiral ionic liquids as chiral recognition agents and organocatalysts. J Mol Liq. 2020; 298:111994. doi:10.1016/j.molliq.2019.111994
- 25Perovic M, Aloni SS, Zhang W, Mastai Y, Antonietti M, Oschatz M. Toward efficient synthesis of porous all-carbon-based nanocomposites for enantiospecific separation. ACS Appl Mater Interfaces. 2021; 13(20): 24228-24237. doi:10.1021/acsami.1c02673
- 26Yohannes A, Feng X, Yao S. Dispersive solid-phase extraction of racemic drugs using chiral ionic liquid-metal-organic framework composite sorbent. J Chromatogr A. 2020; 1627:461395. doi:10.1016/j.chroma.2020.461395
- 27Roy S, Preeyanka N, Majhi D, Seth S, Sarkar M. Striking similarities in the fluorescence behavior between carbon dots and ionic liquids: toward understanding the fluorescence behavior of carbon dots. J Phys Chem C. 2018; 122(23): 12384-12394. doi:10.1021/acs.jpcc.8b03859
- 28Ossowicz P, Klebeko J, Roman B, Janus E, Rozwadowski Z. The relationship between the structure and properties of amino acid ionic liquids. Molecules. 2019; 24(18): 3252. doi:10.3390/molecules24183252
- 29Zhu Y, Ge L, Chen Y, et al. Dehydroabietic acid-based chiral ionic liquids: their synthesis and potential enantiomeric recognition ability. Tetrahedron. 2020; 76(44):131567. doi:10.1016/j.tet.2020.131567
- 30Wu D, Yin Q, Cai P, Zhao X, Pan Y. Enhancement of visual chiral sensing via an anion-binding approach: novel ionic liquids as the chiral selectors. Anal Chim Acta. 2017; 962: 97-103. doi:10.1016/j.aca.2017.01.015
- 31Ma X, Li J, Li X, et al. L-Histidinium chiral ionic liquid functionalized β-cyclodextrin as chiral selector in capillary electrophoresis. J Chromatogr Sci. 2021; 59(4): 388-395. doi:10.1093/chromsci/bmaa115
- 32Chen S, Huang X, Yao S, et al. Highly selective recognition of L-phenylalanine with molecularly imprinted polymers based on imidazolyl amino acid chiral ionic liquid. Chirality. 2019; 31(10): 824-834. doi:10.1002/chir.23110
- 33Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005; 127(8): 2398-2399. doi:10.1021/ja043451i
- 34Wei Y, Chen L, Wang J, Liu X, Yang Y, Yu S. Investigation on the chirality mechanism of chiral carbon quantum dots derived from tryptophan. RSC Adv. 2019; 9(6): 3208-3214. doi:10.1039/C8RA09649J
- 35Chen C, Guo Y, Zhao S, Toufouki S, Song H, Yao S. Chiral ionic liquid-multi walled carbon nanotubes composite membrane applied to the separation of amino acid enantiomers. J Chromatogr A. 2022; 1685:463630. doi:10.1016/j.chroma.2022.463630
- 36Ma X, Zhang C, Cai L. Functional ionic liquids as chiral selector for visual chiral sensing and enantioselective precipitate. Chem Pap. 2023; 77(1): 259-268. doi:10.1007/s11696-022-02490-9
- 37Ivanova TM, Maslakov KI, Sidorov AA, et al. XPS detection of unusual Cu(II) to Cu(I) transition on the surface of complexes with redox-active ligands. J Electron Spectrosc Relat Phenom. 2020; 238:146878. doi:10.1016/j.elspec.2019.06.010
- 38Sivkov DV, Petrova OV, Nekipelov SV, et al. The identification of Cu–O–C bond in Cu/MWCNTs hybrid nanocomposite by XPS and NEXAFS spectroscopy. Nanomaterials. 2021; 11(11): 2993. doi:10.3390/nano11112993
- 39Mehwish N, Dou X, Zhao C, Feng C, Fu Q. Chirality transfer in supramolecular co-assembled fibrous material enabling the visual recognition of sucrose. Adv Fiber Mater. 2020; 2(4): 204-211. doi:10.1007/s42765-020-00028-w
- 40Sedghamiz T, Bahrami M. Chiral ionic liquid interface as a chiral selector for recognition of propranolol enantiomers: a molecular dynamics simulations study. J Mol Liq. 2019; 292:111441. doi:10.1016/j.molliq.2019.111441