Extraction of Sugars and Cellulose Fibers from Cannabis Stems by Hydrolysis, Pulping, and Bleaching
Falguni Pattnaik
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Indian Institute of Technology Delhi, Centre for Rural Development and Technology, 110016 New Delhi, India
Search for more papers by this authorSonil Nanda
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorVivek Kumar
Indian Institute of Technology Delhi, Centre for Rural Development and Technology, 110016 New Delhi, India
Search for more papers by this authorSatyanarayan Naik
Indian Institute of Technology Delhi, Centre for Rural Development and Technology, 110016 New Delhi, India
Search for more papers by this authorCorresponding Author
Ajay K. Dalai
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Correspondence: Ajay K. Dalai ([email protected]), Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada.Search for more papers by this authorMahendra K. Mohanty
Odisha University of Agriculture and Technology, Department of Farm Machinery and Power, 751003 Bhubaneswar, Odisha, India
Search for more papers by this authorFalguni Pattnaik
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Indian Institute of Technology Delhi, Centre for Rural Development and Technology, 110016 New Delhi, India
Search for more papers by this authorSonil Nanda
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Search for more papers by this authorVivek Kumar
Indian Institute of Technology Delhi, Centre for Rural Development and Technology, 110016 New Delhi, India
Search for more papers by this authorSatyanarayan Naik
Indian Institute of Technology Delhi, Centre for Rural Development and Technology, 110016 New Delhi, India
Search for more papers by this authorCorresponding Author
Ajay K. Dalai
University of Saskatchewan, Department of Chemical and Biological Engineering, S7N 5A9 Saskatoon, Saskatchewan, Canada
Correspondence: Ajay K. Dalai ([email protected]), Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada.Search for more papers by this authorMahendra K. Mohanty
Odisha University of Agriculture and Technology, Department of Farm Machinery and Power, 751003 Bhubaneswar, Odisha, India
Search for more papers by this authorAbstract
Cannabis indica stems were hydrolyzed with subcritical water at various temperatures, reaction times, and feed concentrations. The highest total yield of reducing sugars of 16.4 wt % was obtained at 190 °C in 37.5 min with a feed concentration of 3.5 wt %. Solid residues from the optimized process were treated with 0.5 M NaOH (pulping) and 0.5–3 % H2O2 (bleaching) to isolate cellulose fibers. The maximum yield of cellulose was 34.8 wt % with lowest lignin content of 0.5 wt %. With the removal of hemicellulose and lignin through the integrated hydrothermal processes, the crystallinity index and thermal stability of the cellulose fibers increased.
Supporting Information
Filename | Description |
---|---|
ceat202100517-sup-0001-misc_information.pdf829.7 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. A. Okolie, S. Nanda, A. K. Dalai, J. A. Kozinski, Waste Biomass Valorization 2021, 12, 2145–2169. DOI: https://doi.org/10.1007/s12649-020-01123-0
- 2 D. Haldar, M. K. Purkait, Carbohydr. Polym. 2020, 250, 116937. DOI: https://doi.org/10.1016/j.carbpol.2020.116937
- 3 E. Oliaei, P. A. Lindén, Q. Wu, F. Berthold, L. Berglund, T. Lindström, Cellulose 2020, 27, 2325–2341. DOI: https://doi.org/10.1007/s10570-019-02934-8
- 4 K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang, H. Xie, X. Zhang, M. Ma, C. Si, Carbohydr. Polym. 2021, 259, 117740. DOI: https://doi.org/10.1016/j.carbpol.2021.117740
- 5 N. Sharma, R. D. Godiyal, B. P. Thapliyal, J. Graphic Era Univ. 2020, 95–112.
- 6 K. Özdenkçi, C. De Blasio, G. Sarwar, K. Melin, J. Koskinen, V. Alopaeus, Energy 2019, 189, 116284. DOI: https://doi.org/10.1016/j.energy.2019.116284
- 7 J. A. Okolie, S. Nanda, A. K. Dalai, F. Berruti, J. A. Kozinski, Renewable Sustainable Energy Rev. 2020, 119, 109546. DOI: https://doi.org/10.1016/j.rser.2019.109546
- 8 Sarker, F. Pattnaik, S. Nanda, A. K. Dalai, V. Meda, S. Naik, Chemosphere 2021, 131372. DOI: https://doi.org/10.1016/j.chemosphere.2021.131372
- 9 F. Pattnaik, S. Nanda, S. Mohanty, A. K. Dalai, V. Kumar, S. K. Ponnusamy, S. Naik, Chemosphere 2022, 289, 133012. DOI: https://doi.org/10.1016/j.chemosphere.2021.133012
- 10
S. Farag, O. Kayser, in Handbook of Cannabis and Related Pathologies (Ed: V. R. Preedy), Academic Press, Cambridge
2017.
10.1016/B978-0-12-800756-3.00001-6 Google Scholar
- 11 Y. D. Singh, P. Mahanta, U. Bora, Renewable Energy 2017, 103, 490–500. DOI: https://doi.org/10.1016/j.renene.2016.11.039
- 12 P. V. Van Soest, J. B. Robertson, B. A. Lewis, J. Dairy Sci. 1991, 74, 3583–3597.
- 13 K. S. Başkan, E. Tütem, E. Akyüz, S. Özen, R. Apak, Talanta 2016, 147, 162–168. DOI: https://doi.org/10.1016/j.talanta.2015.09.049
- 14 A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, J. Wolfe, Determination of total solids in biomass and total dissolved solids in liquid process samples, National Renewable Energy Laboratory (NREL), Technical Report NREL/TP-510-42621, 2008.
- 15 Y. Furushiro, T. Kobayashi, J. Appl. Glycosci. 2020, 67, 11–15. DOI: https://doi.org/10.5458/jag.jag.JAG-2019_0014
- 16 P. C. Mayanga-Torres, D. Lachos-Perez, C. A. Rezende, J. M. Prado, Z. Ma, G. T. Tompsett, M. T. Timko, T. Forster-Carneiro, J. Supercrit. Fluids 2017, 120, 75–85. DOI: https://doi.org/10.1016/j.supflu.2016.10.015
- 17 F. Pattnaik, S. Nanda, V. Kumar, S. Naik, A. K. Dalai, Biomass Bioenergy 2021, 145, 105965. DOI: https://doi.org/10.1016/j.biombioe.2021.105965
- 18 M. Mohan, R. Timung, N. N. Deshavath, T. Banerjee, V. V. Goud, V. V. Dasu, RSC Adv. 2015, 5, 103265–103275. DOI: https://doi.org/10.1039/C5RA20319H
- 19 J. A. Okolie, R. Rana, S. Nanda, A. K. Dalai, J. A. Kozinski, Sustainable Energy Fuels 2019, 3, 578–598. DOI: https://doi.org/10.1039/C8SE00565F
- 20 J. A. Okolie, S. Nanda, A. K. Dalai, J. A. Kozinski, Int. J. Hydrogen Energy 2020, 45, 18275–18288. DOI: https://doi.org/10.1016/j.ijhydene.2019.05.132
- 21 K. Manorach, A. Poonsrisawat, N. Viriya-empikul, N. Laosiripojana, Energy Procedia 2015, 79, 937–942. DOI: https://doi.org/10.1016/j.egypro.2015.11.590
- 22 G. Yang, E. A. Pidko, E. J. M. Hensen, J. Catal. 2012, 295, 122–132. DOI: https://doi.org/10.1016/j.jcat.2012.08.002
- 23 A. Purnomo, Y. A. W. Yudiantoro, J. N. Putro, A. T. Nugraha, W. Irawaty, S. Ismadji, Int. J. Ind. Chem. 2016, 7, 29–37. DOI: https://doi.org/10.1007/s40090-015-0059-3
- 24 H. Harry, R. Ibrahim, R. Thring, R. Idem, Biomass Bioenergy 2014, 71, 381–393. DOI: https://doi.org/10.1016/j.biombioe.2014.09.017
- 25 Z. F. Yan, L. I. A. N. Jie, Z. H. A. O. Zhou, C. Q. He, X. P. Yue, Y. P. Wang, X. Wu, J. J. Lu, J. Fuel Chem. Technol. 2021, 49, 1122–1131. DOI: https://doi.org/10.1016/S1872-5813(21)60124-X
- 26 H. Pińkowska, P. Wolak, A. Złocińska, Chem. Eng. J. 2012, 187, 410–414. DOI: https://doi.org/10.1016/j.cej.2012.01.092
- 27 A. El Oudiani, Y. Chaabouni, S. Msahli, F. Sakli, Carbohydr. Polym. 2011, 86, 1221–1229. DOI: https://doi.org/10.1016/j.carbpol.2011.06.037
- 28 S. Nanda, J. Maley, J. A. Kozinski, A. K. Dalai, J. Biobased Mater. Bioenergy 2015, 9, 295–308. DOI: https://doi.org/10.1166/jbmb.2015.1529
- 29 C. M. Lee, A. Mittal, A. L. Barnette, K. Kafle, Y. B. Park, H. Shin, D. K. Johnson, S. Park, S. H. Kim, Cellulose 2013, 20, 991–1000. DOI: https://doi.org/10.1007/s10570-013-9917-3
- 30 N. Sebeia, M. Jabli, A. Ghith, Y. El Ghoul, F. M. Alminderej, Int. J. Biol. Macromol. 2019, 121, 655–665.
- 31 M. Mohan, T. Banerjee, V. V. Goud, Bioresour. Technol. 2015b, 191, 244–252. DOI: https://doi.org/10.1016/j.biortech.2015.05.010
- 32 M. K. Nacos, P. Katapodis, C. Pappas, D. Daferera, P. A. Tarantilis, P. Christakopoulos, M. Polissiou, Carbohyd. Polym. 2006, 66, 126–134. DOI: https://doi.org/10.1016/j.carbpol.2006.02.032
- 33 J. Chandra, N. George, S. K. Narayanankutty, Carbohydr. Polym. 2016, 142, 158–166. DOI: https://doi.org/10.1016/j.carbpol.2016.01.015
- 34 M. Chadni, N. Grimi, O. Bals, I. Ziegler-Devin, N. Brosse, Ind. Crops Prod. 2019, 141, 111757. DOI: https://doi.org/10.1016/j.indcrop.2019.111757
- 35 S. Naik, V. V. Goud, P. K. Rout, K. Jacobson, A. K. Dalai, Renewable Energy 2010, 35, 1624–1631. DOI: https://doi.org/10.1016/j.renene.2009.08.033
- 36 C. Krongtaew, K. Messner, T. Ters, K. Fackler, Bioresources 2010, 5, 2063–2080.
- 37 U. P. Agarwal, Molecules 2019, 24, 1659. DOI: https://doi.org/10.3390/molecules24091659
- 38
H. Li, Y. Qu, J. Xu, in Production of Biofuels and Chemicals with Microwave (Eds: F. Zhen, R. L. Smith
X. Qi), Springer, Dordrecht
2015.
10.1007/978-94-017-9612-5_4 Google Scholar
- 39 B. Deepa, E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blaker, L. A. Pothan, A. L. Leao, S. F. de Souza, M. Kottaisamy, Bioresour. Technol. 2011, 102, 1988–1997. DOI: https://doi.org/10.1016/j.biortech.2010.09.030
- 40 R. Azargohar, S. Nanda, K. Kang, T. Bond, C. Karunakaran, A. K. Dalai, J. A. Kozinski, Renewable Energy 2019, 132, 296–307. DOI: https://doi.org/10.1016/j.renene.2018.08.003
- 41 D. Fougere, S. Nanda, K. Clarke, J. A. Kozinski, K. Li, Biomass Bioenergy 2016, 91, 56–68. DOI: https://doi.org/10.1016/j.biombioe.2016.03.027
- 42 F. Pattnaik, S. Tripathi, B. R. Patra, S. Nanda, V. Kumar, A. K. Dalai, S. Naik, Environ. Chem. Lett. 2021, 19, 4119–4136. DOI: https://doi.org/10.1007/s10311-021-01284-x
- 43 E. Galiwango, N. S. Rahman, A. H. Al-Marzouqi, M. M. Abu-Omar, A. A. Khaleel, Heliyon 2019, 5, e02937. DOI: https://doi.org/10.1016/j.heliyon.2019.e02937
- 44 G. Z. Fan, Y. X. Wang, G. S. Song, J. T. Yan, J. F. Li, J. Appl. Polym. Sci. 2017, 134, 44901. DOI: https://doi.org/10.1002/app.44901
- 45 J. X. Sun, X. F. Sun, H. Zhao, R. C. Sun, Polym. Degrad. Stabil. 2004, 84, 331–339. DOI: https://doi.org/10.1016/j.polymdegradstab.2004.02.008
- 46 R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, H. Kargarzadeh, Carbohyd. Polym. 2012, 88, 772–779. DOI: https://doi.org/10.1016/j.carbpol.2012.01.062