Thiophene-S,S-dioxidized Indophenine: A Quinoid-Type Building Block with High Electron Affinity for Constructing n-Type Polymer Semiconductors with Narrow Band Gaps
Dr. Yunfeng Deng
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorBin Sun
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYinghui He
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorJesse Quinn
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Chang Guo
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuning Li
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Yunfeng Deng
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorBin Sun
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYinghui He
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorJesse Quinn
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Chang Guo
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuning Li
Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorAbstract
Three thiophene-S,S-dioxidized indophenine (IDTO) isomers, 3 a (E,E,E), 3 b (Z,E,E), and 3 c (Z,E,Z), were synthesized by oxidation of an indophenine compound. 3 b and 3 c could be converted into the most-stable 3 a by heating at 110 °C. An IDTO-containing conjugated polymer, PIDTOTT, was prepared using 3 a as a comonomer through a Stille coupling reaction, and it possesses a narrow band gap and low energy levels. In organic field effect transistors (OFETs), PIDTOTT exhibited unipolar n-type semiconductor characteristics with unexpectedly high electron mobility (up to 0.14 cm2 V−1 s−1), despite its rather disordered chain packing.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201508781-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K.-J. Baeg, M. Caironi, Y.-Y. Noh, Adv. Mater. 2013, 25, 4210–4244.
- 2M. P. Walser, W. L. Kalb, T. Mathis, B. Batlogg, Appl. Phys. Lett. 2009, 95, 233301.
- 3X.-H. Zhang, W. J. Potscavage, S. Choi, B. Kippelen, Appl. Phys. Lett. 2009, 94, 043312.
- 4H. Li, F. S. Kim, G. Ren, E. C. Hollenbeck, S. Subramaniyan, S. A. Jenekhe, Angew. Chem. Int. Ed. 2013, 52, 5513–5517; Angew. Chem. 2013, 125, 5623–5627.
- 5T. Earmme, Y.-J. Hwang, N. M. Murari, S. Subramaniyan, S. A. Jenekhe, J. Am. Chem. Soc. 2013, 135, 14960–14963.
- 6X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S. R. Marder, J. Am. Chem. Soc. 2007, 129, 7246–7247.
- 7A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, Synth. Met. 1994, 66, 257–261.
- 8E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, J. A. Rogers, Adv. Mater. 2004, 16, 2097–2101.
- 9T. M. Pappenfus, R. J. Chesterfield, C. D. Frisbie, K. R. Mann, J. Casado, J. D. Raff, L. L. Miller, J. Am. Chem. Soc. 2002, 124, 4184–4185.
- 10R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H. Haukaas, K. R. Mann, L. L. Miller, C. D. Frisbie, Adv. Mater. 2003, 15, 1278–1282.
- 11J.-C. Ribierre, S. Watanabe, M. Matsumoto, T. Muto, A. Nakao, T. Aoyama, Adv. Mater. 2010, 22, 4044–4048.
- 12S. Handa, E. Miyazaki, K. Takimiya, Y. Kunugi, J. Am. Chem. Soc. 2007, 129, 11684–11685.
- 13Y. Suzuki, E. Miyazaki, K. Takimiya, J. Am. Chem. Soc. 2010, 132, 10453–10466.
- 14Y. Suzuki, M. Shimawaki, E. Miyazaki, I. Osaka, K. Takimiya, Chem. Mater. 2011, 23, 795–804.
- 15J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater. 2014, 26, 5782–5788.
- 16Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem. Mater. 2011, 23, 3138–3140.
- 17C. Zhang, Y. Zang, E. Gann, C. R. Mcneill, X. Zhu, C. Di, D. Zhu, J. Am. Chem. Soc. 2014, 136, 16176.
- 18J. L. Brédas, B. Thémans, J. G. Fripiat, J. M. André, R. R. Chance, Phys. Rev. B 1984, 29, 6761–6773.
- 19J. Roncali, Chem. Rev. 1997, 97, 173–206.
- 20J. L. Brédas, J. Chem. Phys. 1985, 82, 3808.
- 21F. Wudl, M. Kobayashi, A. J. Heeger, J. Org. Chem. 1984, 49, 3382–3384.
- 22J. L. Brédas, A. J. Heeger, F. Wudl, J. Chem. Phys. 1986, 85, 4673–4678.
- 23P. Deng, L. Liu, S. Ren, H. Li, Q. Zhang, Chem. Commun. 2012, 48, 6960–6962.
- 24W. Hong, C. Guo, Y. Li, Y. Zheng, C. Huang, S. Lu, A. Facchetti, J. Mater. Chem. 2012, 22, 22282–22289.
- 25J. W. Rumer, M. Levick, S.-Y. Dai, S. Rossbauer, Z. Huang, L. Biniek, T. D. Anthopoulos, J. R. Durrant, D. J. Procter, I. McCulloch, Chem. Commun. 2013, 49, 4465–4467.
- 26W. Cui, F. Wudl, Macromolecules 2013, 46, 7232–7238.
- 27W. Hong, B. Sun, C. Guo, J. Yuen, Y. Li, S. Lu, C. Huang, A. Facchetti, Chem. Commun. 2013, 49, 484–486.
- 28H. D. Hartough, The Chemistry of Heterocyclic Compounds, Condensed Thiophene Rings, Vol. 7, Wiley, Hoboken, 2009, p. 206.
- 29A. Baeyer, Ber. Dtsch. Chem. Ges. 1879, 12, 1309–1319.
10.1002/cber.18790120221 Google Scholar
- 30H. Hwang, D. Khim, J.-M. Yun, E. Jung, S.-Y. Jang, Y. H. Jang, Y.-Y. Noh, D.-Y. Kim, Adv. Funct. Mater. 2015, 25, 1146–1156.
- 31G. V. Tormos, K. A. Belmore, M. P. Cava, J. Am. Chem. Soc. 1993, 115, 11512–11515.
- 32C. Zhang, T. H. Nguyen, J. Sun, R. Li, S. Black, C. E. Bonner, S.-S. Sun, Macromolecules 2009, 42, 663–670.
- 33E. Amir, S. Rozen, Angew. Chem. Int. Ed. 2005, 44, 7374–7378; Angew. Chem. 2005, 117, 7540–7544.
- 34M. M. Oliva, J. Casado, J. T. L. Navarrete, S. Patchkovskii, T. Goodson, M. R. Harpham, J. S. Seixas de Melo, E. Amir, S. Rozen, J. Am. Chem. Soc. 2010, 132, 6231–6242.
- 35E. Amir, K. Sivanandan, J. E. Cochran, J. J. Cowart, S.-Y. Ku, J. H. Seo, M. L. Chabinyc, C. J. Hawker, J. Polym. Sci. Part A 2011, 49, 1933–1941.
- 36M. H. M. Cativo, A. C. Kamps, J. Gao, J. K. Grey, G. R. Hutchison, S.-J. Park, J. Phys. Chem. B 2013, 117, 4528–4535.
- 37J. E. Cochran, E. Amir, K. Sivanandan, S.-Y. Ku, J. H. Seo, B. A. Collins, J. R. Tumbleston, M. F. Toney, H. Ade, C. J. Hawker, M. L. Chabinyc, J. Polym. Sci. Part B 2013, 51, 48–56.
- 38S. Potash, S. Rozen, Chem. Eur. J. 2013, 19, 5289–5296.
- 39E. J. Dell, B. Capozzi, J. Xia, L. Venkataraman, L. M. Campos, Nat. Chem. 2015, 7, 209–214.
- 40E. Busby, J. Xia, Q. Wu, J. Z. Low, R. Song, J. R. Miller, X.-Y. Zhu, L. M. Campos, M. Y. Sfeir, Nat. Mater. 2015, 14, 426–433.
- 41S. Wei, J. Xia, E. J. Dell, Y. Jiang, R. Song, H. Lee, P. Rodenbough, A. L. Briseno, L. M. Campos, Angew. Chem. Int. Ed. 2014, 53, 1832–1836; Angew. Chem. 2014, 126, 1863–1867.
- 42X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. M. Zhang, I. McCulloch, D. M. DeLongchamp, Nat. Commun. 2013, 4, 2238.
- 43CCDC 1426656 (3 a-C6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.