Dielectric properties analysis of dough and further microwave baking for cookies
Mónica Giovanna Gutiérrez-Cárdenas
Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Mexico
Contribution: Investigation, Methodology
Search for more papers by this authorTejinder Kaur
Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca, Mexico
Contribution: Methodology, Software
Search for more papers by this authorAlonso Corona-Chávez
Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
Contribution: Resources, Software, Writing - review & editing
Search for more papers by this authorJosé Luis Olvera-Cervantes
Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
Contribution: Funding acquisition, Writing - review & editing
Search for more papers by this authorJulián Andrés Gómez-Salazar
Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Mexico
Contribution: Data curation, Software, Writing - review & editing
Search for more papers by this authorCorresponding Author
Roberto Rojas-Laguna
Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca, Mexico
Correspondence
María Elena Sosa-Morales, Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico.
Email: [email protected]
Roberto Rojas-Laguna, Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad Palo Blanco, Salamanca, Gto., 36600 Mexico
Email: [email protected]
Contribution: Data curation, Investigation, Supervision, Validation
Search for more papers by this authorCorresponding Author
María Elena Sosa-Morales
Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Mexico
Correspondence
María Elena Sosa-Morales, Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico.
Email: [email protected]
Roberto Rojas-Laguna, Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad Palo Blanco, Salamanca, Gto., 36600 Mexico
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Project administration, Supervision, Writing - original draft
Search for more papers by this authorMónica Giovanna Gutiérrez-Cárdenas
Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Mexico
Contribution: Investigation, Methodology
Search for more papers by this authorTejinder Kaur
Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca, Mexico
Contribution: Methodology, Software
Search for more papers by this authorAlonso Corona-Chávez
Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
Contribution: Resources, Software, Writing - review & editing
Search for more papers by this authorJosé Luis Olvera-Cervantes
Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
Contribution: Funding acquisition, Writing - review & editing
Search for more papers by this authorJulián Andrés Gómez-Salazar
Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Mexico
Contribution: Data curation, Software, Writing - review & editing
Search for more papers by this authorCorresponding Author
Roberto Rojas-Laguna
Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca, Mexico
Correspondence
María Elena Sosa-Morales, Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico.
Email: [email protected]
Roberto Rojas-Laguna, Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad Palo Blanco, Salamanca, Gto., 36600 Mexico
Email: [email protected]
Contribution: Data curation, Investigation, Supervision, Validation
Search for more papers by this authorCorresponding Author
María Elena Sosa-Morales
Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Mexico
Correspondence
María Elena Sosa-Morales, Posgrado en Biociencias, Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico.
Email: [email protected]
Roberto Rojas-Laguna, Departamento de Ingeniería Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad Palo Blanco, Salamanca, Gto., 36600 Mexico
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Project administration, Supervision, Writing - original draft
Search for more papers by this authorAbstract
Microwave heating is gaining relevance for cooking processes with faster heating speeds, shorter processing times, and lower environmental impact than traditional heating (gas or electric ovens for bakery products). Dielectric properties of cookies dough (16.9% moisture content and 19.5% fat content, w.b., density of 650 kg/m3) were analyzed for temperature (18–80°C) and microwave frequency (0.5–2.5 GHz). The penetration depth was calculated, and with the obtained results, the maximum thickness values for the cookies were 1.61 and 0.73 cm for 915 and 2450 MHz, respectively, to ensure enough wave penetration. The dough was cut into 8 -cm-diameter and 0.7 -cm-thickness pieces and MW baked at 360 W for 1.5 min. MW-baked cookies were compared with cookies from the same dough baked in an electric oven at 160°C for 12 min, being similar. MW baking time was shorter, which means the method has potential for this kind of dough.
Practical applications
DPs are key factors in developing processes, simulation, and modeling employing MW heating. The MW process time is short and produces a lower environmental impact than conventional baking. MW ovens at the industrial level are available in the market to scale up the assays at the lab level (2450 MHz and small amounts). For this kind of dough, the possibility of getting MW-baked cookies is real.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study
REFERENCES
- Ahmed, J., Ramaswamy, H. S., & Raghavan, V. G. (2007). Dielectric properties of butter in the MW frequency range as affected by salt and temperature. Journal of Food Engineering, 82(3), 351–358.
- AL-Ansi, W., Mahdi, A. A., Al-Maqtari, Q. A., Fan, M., Wang, L., Li, Y., Qian, H., & Zhang, H. (2019). Evaluating the role of microwave-baking and fennel (Foeniculum vulgare L.)/nigella (Nigella sativa L.) on acrylamide growth and antioxidants potential in biscuits. Journal of Food Measurement and Characterization, 13(3), 2426–2437.
- Al-Muhtaseb, A. H., Hararah, M. A., Megahey, E. K., McMinn, W. A. M., & Magee, T. R. A. (2010). Dielectric properties of microwave-baked cake and its constituents over a frequency range of 0.915–2.450 GHz. Journal of Food Engineering, 98(1), 84–92.
- American Association for Cereal Chemists. (1998). Measurement of Bread Firmness by Universal Testing Machxine. Method 74–09.01. In Approved methods of analysis ( 11th ed.).
- Association of Official Analytical Chemists. (2000). Analytical methods.
- Binner, E., Mediero-Munoyerro, M., Huddle, T., Kingman, S., Dodds, C., Dimitrakis, G., & Lester, E. (2014). Factors affecting the microwave cooking of coals and the implications on microwave cavity design. Fuel Processing Technology, 125, 8–17.
- Bou-Orm, R., Jury, V., Boillereaux, L., & Le-Bail, A. (2021). Microwave baking of bread; a review on the impact of formulation and process on bread quality. Food Reviews International, 1931299, 1–23.
- Decareau, R. V. (1985). Microwaves in the food processing industry. Academic Press Inc.
- Garg, A., Malafronte, L., & Windhab, E. J. (2019). Baking kinetics of laminated dough using convective and microwave heating. Food and Bioproducts Processing, 115, 59–67.
- Goedeken, D. L., Tong, C. H., & Virtanen, A. J. (1997). Dielectric properties of a pregelatinized bread system at 2450 MHz as a function of temperature, moisture, salt and specific volume. Journal of Food Science, 62(1), 145–149.
- Gómez-Salazar, J. A., Patlán-González, J. S. J., Sosa-Morales, M. E., Segovia- Hernandez, J. G., Sánchez-Ramírez, E., & Ramírez-Márquez, C. (2022). Multi-objective optimization of sustainable red prickly pear (Opuntia streptacantha) peel drying and biocompounds extraction using a hybrid stochastic algorithm. Food and Bioproducts Processing, 132, 155–166.
- Institute of Food Science and Technology. (2020). IFST sensory & consumer science guidelines for running testing in response to COVID-19. https://www.ifst.org/sites/default/files/Sensory%20Consumer%20Science%20Research%20Guidelines%20in%20response%20to%20COVID-19_with%20Intro%20240920%20%282%29.pdf
- Jiang, H., Liu, Z., & Wang, S. (2018). Microwave processing: Effects and impacts on food components. Critical Reviews in Food Science and Nutrition, 58(14) 2476–2489.
- Kataria, T. K., Sosa-Morales, M. E., Olvera-Cervantes, J. L., Rojas-Laguna, R., & Corona-Chavez, A. (2019). Dielectric properties of pulque at different temperatures from 0.1 to 25 GHz. Journal of Microwave Power and Electromagnetic Energy, 53(4), 215–224.
- Keskin, S. O., Sumnu, G., & Sahin, S. (2004). Bread baking in halogen lamp-microwave combination oven. Food Research International, 37(5), 489–495.
- Keskin, S. O., Sumnu, G., & Sahin, S. (2007). A study on the effects of different gums on dielectric properties. European Food Research and Technology, 224, 329–334.
- Krystyjan, M., Gumul, D., Ziobro, R., & Korus, A. (2015). The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. LWT - Food Science and Technology, 63(1), 640–646.
- Liu, Y., Tang, J., & Mao, Z. (2009). Analysis of bread dielectric properties using mixture equations. Journal of Food Engineering, 93(1), 72–79.
- Martin, G. (2008). Factors that affect power and uniformity of heating in microwave ovens. In Proceedings of the 42nd Symposium of IMPI, New Orleans, LA (pp. 22–26). IMPI.
- Meda, V., Orsat, V., & Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In: M. Reiger, K. Knoerzer & H. Schubert (Eds.). The Microwave Processing of Foods (2nd ed). Woodhead Publishing Series in Food Science, Technology and Nutrition. (pp. 23–43). Elsevier.
10.1016/B978-0-08-100528-6.00002-4 Google Scholar
- NMX-F-006-1983. (1983). Foods. Cookies. Mexican Standards. Secretary of Economy, Government of Mexico. Mexico City.
- Pérez-Reyes, M. E., Gómez-Salazar, J. A., López-Malo, A., & Sosa- Morales, M. E. (2021). Influence of fat content and water activity on the heating pattern of model systems submitted to microwave heating. Journal of Food Science, 86, 5329–5339.
- Sacilik, K., & Colak, A. (2010). Determination of dielectric properties of corn seeds from 1 to 100 MHz. Powder Technology, 203(2), 365–370.
- Sakiyan, O., Sumnu, G., Sahin, S., & Meda, V. (2007). Investigation of dielectric properties of different cake formulations during microwave and infrared–microwave combination baking. Journal of Food Science, 72(4), E205–E213.
- Soler-Martínez, N., Castillo-Ruiz, O., Rodríguez-Castillejos, G., Perales-Torres, A., & González-Pérez, A. L. (2017). Nutritional, texture and sensory profile of cookies from wheat, sorghum and bean. Archivos Latinoamericanos de Nutrición, 67, 3.
- Sosa-Morales, M. E., Guerrero-Cruz, G., González-Loo, H., & Vélez-Ruiz, J. F. (2004). Modeling of heat and mass transfer during baking of biscuits. Journal of Food Processing and Preservation, 28, 417–432.
- Sosa-Morales, M. E., Valerio-Junco, L., García, H. S., & López-Malo, A. (2010). Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT - Food Science and Technology, 43, 1169–1179.
- Soto-Reyes, N., Temis-Pérez, A. L., López-Malo, A., Rojas-Laguna, R., & Sosa-Morales, M. E. (2015). Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment. Journal of Food Science, 80(5), E1021–E1025.
- Srikanlaya, C., Therdthai, N., Ritthiruangdej, P., & Zhou, W. (2017). Effect of butter content and baking condition on characteristics of the gluten-free dough and bread. International Journal of Food Science and Technology, 52, 1904–1913.
- Sumnu, G., Datta, A. K., Sahin, S., Keskin, S. O., & Rakesh, V. (2007). Transport and related properties of breads baked using various heating modes. Journal of Food Engineering, 78, 1382–1387.
- Tang, J. (2015). Unlocking potentials of microwaves for food safety and quality. Journal of Food Science, 80(8), E1776–E1793.
- USDA. (2015). Unites States Department of Agriculture. Kinetics of Microbial Inactivation for Alternative Food Processing Technologies. Microwave and Radio Frequency Processing. https://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm100250.htm
- USDA. (2020). Unites States Department of Agriculture. FoodData Central. Cookies, sugar, refrigerated dough. https://fdc.nal.usda.gov/fdc-app.html#/food-details/174972/nutrients
- Von Hippel, A. R. (1954). Dielectric properties and waves. John Wiley.
- Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57(3), 257–268.