Investigation of the effect of hydrodynamic cavitation treatment on the aging of tender coconut–palmyra wine
Nitthya Kochadai
Biotechnology, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
Contribution: Data curation, Formal analysis, Methodology, Writing - original draft
Search for more papers by this authorVincent Hema
Food Processing and Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
Contribution: Writing - review & editing
Search for more papers by this authorCorresponding Author
Sinija Vadakkepulppara Ramachandran Nair
Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
Correspondence
Sinija Vadakkepulppara Ramachandran Nair, Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India.
Email: [email protected]
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorNitthya Kochadai
Biotechnology, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
Contribution: Data curation, Formal analysis, Methodology, Writing - original draft
Search for more papers by this authorVincent Hema
Food Processing and Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
Contribution: Writing - review & editing
Search for more papers by this authorCorresponding Author
Sinija Vadakkepulppara Ramachandran Nair
Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
Correspondence
Sinija Vadakkepulppara Ramachandran Nair, Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India.
Email: [email protected]
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorAbstract
The effect of hydrodynamic cavitation (HC) on accelerated aging of tender coconut and palmyra blend wine was investigated at 3.45 bar pressure and 15–60 min of treatment (72 to 287 passes). The concentrations of phenolic (3.09 mgGAE/ml) and vitamin C (61.11 mg/100 ml) were maximum after 60 min treatment. However, as treatment time increased, the combined effect of temperature and pressure decreased antioxidant content while increasing the b* value. The overall acidity and pH did not vary significantly. As a result, a 15-min treatment at 3.45 bar pressure was the most effective. Particle size analysis demonstrated a drop in particle size (D50 549.7 to 246.5) following HC treatment, indicating that HC-treated wine had a greater influence on aging than standard wine. This research highlights the application of HC as a green technique for wine aging, which might be a game changer in beverage sector.
Novelty impact statement
- Effect of hydrodynamic cavitation at 3.45 bar for 15–60 min for the aging of wine was studied
- Treatment had a synergistic effect on phenols and Vit C and an antagonistic effect on color and antioxidants
- FTIR showed that alterations in functional compounds with time during aging of sample wines were comparable to commercial wine.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
All data regarding the manuscript is given in the main manuscript document and the supplementary materials.
REFERENCES
- Aadil, R. M., Zeng, X.-A., Han, Z., & Sun, D.-W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206.
- Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O'Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.
- Albanese, L., Ciriminna, R., Meneguzzo, F., & Pagliaro, M. (2015). Energy efficient inactivation of Saccharomyces cerevisiae via controlled hydrodynamic cavitation. Energy Science & Engineering, 3, 221–238. https://doi.org/10.1002/ese3.62
- Albanese, L., Ciriminna, R., Meneguzzo, F., & Pagliaro, M. (2017a). Beer-brewing powered by controlled hydrodynamic cavitation: Theory and real-scale experiments. Journal of Cleaner Production, 142, 1457–1470.
- Albanese, L., Ciriminna, R., Meneguzzo, F., & Pagliaro, M. (2017b). Gluten reduction in beer by hydrodynamic cavitation assisted brewing of barley malts. LWT-Food Science and Technology, 82, 342–353.
- Albanese, L., Ciriminna, R., Meneguzzo, F., & Pagliaro, M. (2018). Innovative beer-brewing of typical, old and healthy wheat varieties to boost their spreading. Journal of Cleaner Production, 171, 297–311.
- Albanese, L., & Meneguzzo, F. (2019). Hydrodynamic cavitation-assisted processing of vegetable beverages: Review and the case of beer-brewing. Production and Management of Beverages, 1, 211–257.
10.1016/B978-0-12-815260-7.00007-9 Google Scholar
- Arya, S. S., Sawant, O., Sonawane, S. K., Show, P. L., Waghamare, A., Hilares, R., & Santos, J. C. D. (2020). Novel, non-thermal, energy efficient, industrially scalable hydrodynamic cavitation--applications in food processing. Food Reviews International, 36(7), 668–691.
- Arya, S. S., More, P. R., Terán Hilares, R., Pereira, B., Arantes, V., da Silva, S. S., & Santos, J. C. (2021). Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures. Journal of Food Processing and Preservation, 45(10), e15794.
- Asaithambi, N., Singha, P., Dwivedi, M., & Singh, S. K. (2019). Hydrodynamic cavitation and its application in food and beverage industry: A review. Journal of Food Process Engineering, 42(5), e13144.
- Athira, V. A. (2020). Quality evaluation of developed wine using hydrodynamic cavitation. Indian Institute of Food Processing Technology, affiliated with TNAU.
- Balasundaram, B., & Harrison, S. T. L. (2011). Optimising orifice geometry for selective release of periplasmic products during cell disruption by hydrodynamic cavitation. Biochemical Engineering Journal, 54(3), 207–209.
- Bhukya, J., Naik, R., Mohapatra, D., Sinha, L. K., & Rao, K. V. R. (2021). Orifice based hydrodynamic cavitation of sugarcane juice: Changes in Physico-chemical parameters and Microbiological load. LWT, (150), 111909.
10.1016/j.lwt.2021.111909 Google Scholar
- Bramantyo, A., Febriyati, P., Gunardi, I., & Trisanti, P. N. (2019). Ultrasound pretreatment for intensification of hydrothermal process in reducing sugar production from cassava starch. IOP Conference Series: Materials Science and Engineering, 543(1), 12085.
10.1088/1757-899X/543/1/012085 Google Scholar
- Călugăr, A., Coldea, T. E., Pop, C. R., Pop, T. I., Babeș, A. C., Bunea, C. I., Manolache, M., & Gal, E. (2020). Evaluation of volatile compounds during ageing with oak chips and oak barrel of muscat ottonel wine. Processes, 8(8), 1000.
- Canas, S., Caldeira, I., Anjos, O., & Belchior, A. P. (2019). Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT, 111, 260–269.
- Carpenter, J., Badve, M., Rajoriya, S., George, S., Saharan, V. K., & Pandit, A. B. (2017). Hydrodynamic cavitation: An emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Reviews in Chemical Engineering, 33(5), 433–468.
- Carvalho, M. J., Pereira, V., Pereira, A. C., Pinto, J. L., & Marques, J. C. (2015). Evaluation of wine colour under accelerated and oak-cask ageing using CIELab and chemometric approaches. Food and Bioprocess Technology, 8(11), 2309–2318.
- Chang, A. C. (2005). Study of ultrasonic wave treatments for accelerating the aging process in a rice alcoholic beverage. Food Chemistry, 92(2), 337–342.
- Chang, A. C., & Chen, F. C. (2002). The application of 20 kHz ultrasonic waves to accelerate the aging of different wines. Food Chemistry, 79(4), 501–506.
- Chen, Y., & Martynenko, A. (2016). Effect of hydrothermodynamic (HTD) processing on physical and chemical qualities of American cranberry puree using response surface methodology (RSM). LWT, 70, 322–332.
- Ciriminna, R., Albanese, L., Di Stefano, V., Delisi, R., Avellone, G., Meneguzzo, F., & Pagliaro, M. (2018). Beer produced via hydrodynamic cavitation retains higher amounts of xanthohumol and other hops prenylflavonoids. LWT, 91, 160–167.
- Cravotto, G., Christian, C., Veselov, V. V (2019). Ultrasound-and Hydrodynamic-cavitation assisted extraction in food processing. Elsevier.
- Del Alamo Sanza, M., Escudero, J. A. F., & De Castro Torío, R. (2004). Changes in phenolic compounds and colour parameters of red wine aged with oak chips and in oak barrels. Food Science and Technology International, 10(4), 233–241.
- Del Fresno, J. M., Loira, I., Morata, A., González, C., Suárez-Lepe, J. A., & Cuerda, R. (2018). Application of ultrasound to improve lees ageing processes in red wines. Food Chemistry, 261, 157–163.
- Delgado-González, M. J., Sánchez-Guillén, M. M., García-Moreno, M. V., Rodríguez-Dodero, M. C., García-Barroso, C., & Guillén-Sánchez, D. A. (2017). Study of a laboratory-scaled new method for the accelerated continuous ageing of wine spirits by applying ultrasound energy. Ultrasonics Sonochemistry, 36, 226–235.
- Dong, Z., & Qin, Z. (2018). Experimental study of pathogenic microorganisms inactivated by Venturi-type hydrodynamic cavitation with different throat lengths. Journal of the Civil Engineering Forum, 4(3), 209.
10.22146/jcef.38756 Google Scholar
- Ferrari, A. (2017). Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2199), 20160345.
- FSSAI. (2021). Manual of methods of analysis of foods alcoholic beverages. https://fssai.gov.in/upload/uploadfiles/files/Order_Manual_Analysis_Alcoholic_Beverages_20_07_2021.pdf
- Gągol, M., Cako, E., Fedorov, K., Soltani, R. D. C., Przyjazny, A., & Boczkaj, G. (2020). Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants. Journal of Molecular Liquids, 307, 113002.
- Gani, A., Baba, W. N., Ahmad, M., Shah, U., Khan, A. A., Wani, I. A., Masoodi, F. A., & Gani, A. (2016). Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT-Food Science and Technology, 66, 496–502.
- Garcia-Hernandez, C., Salvo-Comino, C., Martin-Pedrosa, F., Garcia-Cabezon, C., & Rodriguez-Mendez, M. L. (2020). Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT, 118, 108785.
- Gogate, P.R. (2011). Application of hydrodynamic cavitation for food and bioprocessing. In H. Feng, G. Barbosa-Canovas, J. Weiss (Eds.). Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer. https://doi.org/10.1007/978-1-4419-7472-3_6
10.1007/978-1-4419-7472-3_6 Google Scholar
- Gregersen, S. B., Wiking, L., Bertelsen, K. B., Tangsanthatkun, J., Pedersen, B., Poulsen, K. R., Andersen, U., & Hammershøj, M. (2019). Viscosity reduction in concentrated protein solutions by hydrodynamic cavitation. International Dairy Journal, 97, 1–4.
- Higuera-Barraza, O. A., Torres-Arreola, W., Ezquerra-Brauer, J. M., Cinco-Moroyoqui, F. J., Figueroa, J. C. R., & Marquez-Ríos, E. (2017). Effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins. Ultrasonics Sonochemistry, 38, 829–834.
- Hilares, R. T., Dionízio, R. M., Muñoz, S. S., Prado, C. A., de Sousa Júnior, R., da Silva, S. S., & Santos, J. C. (2020). Hydrodynamic cavitation-assisted continuous pretreatment of sugarcane bagasse for ethanol production: Effects of geometric parameters of the cavitation device. Ultrasonics Sonochemistry, 63, 104931.
- Hilares, R. T., Dos Santos, J. G., Shiguematsu, N. B., Ahmed, M. A., da Silva, S. S., & Santos, J. C. (2019). Low-pressure homogenization of tomato juice using hydrodynamic cavitation technology: Effects on physical properties and stability of bioactive compounds. Ultrasonics Sonochemistry, 54, 192–197.
- Hilares, R. T., Ienny, J. V., Marcelino, P. F., Ahmed, M. A., Antunes, F. A. F., da Silva, S. S., & Dos Santos, J. C. (2017). Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material. Bioresource Technology, 243, 652–659.
- Hosseinzadeh Samani, B., Behruzian, A., Khoshtaghaza, M. H., Behruzian, M., & Ansari Ardali, A. (2020). The investigation and optimization of two combined pasteurization methods of ultrasonic-pulse electric field and hydrodynamic-pulse electric field on sour cherry juice using RSM-TOPSIS. Journal of Food Processing and Preservation, 44(9), e14700.
- Jambrak, A. R., Mason, T. J., Lelas, V., Paniwnyk, L., & Herceg, Z. (2014). Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 121, 15–23.
- Jiao, Y., Guo, C., Guan, S., Pan, X., Ma, X., Zhang, Z., Zhang, Q., & He, C. (2020). Enhancement of converting corn stalk into reducing sugar by ultrasonic-assisted ammonium bicarbonate pretreatment. Bioresource Technology, 302, 122878.
- Jing, J. (2011). Study on accelerated ageing of Chinese rice wine by microwave. Journal of Anhui Agricultural Sciences, 2011, 23.
- Joshi, S. M., & Gogate, P. R. (2020). Intensification of dilute acid hydrolysis of spent tea powder using ultrasound for enhanced production of reducing sugars. Ultrasonics Sonochemistry, 61, 104843.
- Karthikeyan, R., Suresh Kumar, K., Singaravadivel, K., & Alagusundaram, K. (2014). Volatile elements of coconut toddy (Cocos nucifera) by gas chromatography--mass spectrometry. Journal of Chromatography and Separation Techniques, 5(213), 2.
- Katariya, P., Arya, S. S., & Pandit, A. B. (2020). Novel, non-thermal hydrodynamic cavitation of orange juice: Effects on physical properties and stability of bioactive compounds. Innovative Food Science & Emerging Technologies, 62, 102364.
- Kochadai, N., Bhosale, Y. K., & Vadakkepulppara Ramachandran Nair, S. (2022). Effect of radiofrequency pretreatment on the extraction of bioactives from Clitoria ternatea and Hibiscus rosa sinensis and insights to enzyme inhibitory activities. Food and Bioprocess Technology, 15, 571–589. https://doi.org/10.1007/s11947-022-02770-y
- Kochadai, N., Radhakrishnan, M., Khasherao, B. Y., Hema, V., & Sinija, V. R. N. (2021). Development of low alcoholic wine using tender coconut and tender palmyra as a novel source and its quality evaluation. The Indian Journal of Nutrition and Dietetics, 58(4), 28560. https://doi.org/10.21048/IJND.2021.58.4.28560
10.21048/IJND.2021.58.4.28560 Google Scholar
- Li, C., Yang, F., Huang, Y., Huang, C., Zhang, K., & Yan, L. (2020). Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. Journal of Food Engineering, 265, 109697.
- Li, R., Huang, L., Zhang, M., Mujumdar, A. S., & Wang, Y. C. (2014). Freeze drying of apple slices with and without application of microwaves. Drying Technology, 32(15), 1769–1776.
- Li, X., Zhang, L., Peng, Z., Zhao, Y., Wu, K., Zhou, N., Yan, Y., Ramaswamy, H. S., Sun, J., & Bai, W. (2020). The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro antioxidant capacity. Food Chemistry, 333, 127455.
- Lohani, U. C., Muthukumarappan, K., & Meletharayil, G. H. (2016). Application of hydrodynamic cavitation to improve antioxidant activity in sorghum flour and apple pomace. Food and Bioproducts Processing, 100, 335–343.
- Lokesh, K., Suresha, G. J., & Jagadeesh, S. L. (2014). Effect of yeast strains and must types on quality of jamun wine. Asian Journal of Horticulture, 9(1), 24–27.
- Machamangalath, R., Arekar, C., & Lele, S. S. (2016). Exotic tropical fruit wines from Garcinia indica and Musa acuminate. Journal of the Institute of Brewing, 122(4), 745–753. https://doi.org/10.1002/jib.379
- Mărgean, A., & Pădureanu, V. (2018). The influence of ultrasound treatment on must fermentation process. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering, 11(2), 127–132.
- Martínez-Pérez, M. P., Bautista-Ortín, A. B., Pérez-Porras, P., Jurado, R., & Gómez-Plaza, E. (2020). A new approach to the reduction of alcohol content in red wines: The use of high-power ultrasounds. Food, 9(6), 726.
- Mevada, J., Devi, S., & Pandit, A. (2019). Large scale microbial cell disruption using hydrodynamic cavitation: Energy saving options. Biochemical Engineering Journal, 143, 151–160.
- Milly, P. J., Toledo, R. T., Harrison, M. A., & Armstead, D. (2007). Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods. Journal of Food Science, 72(9), M414–M422.
- Milly, P. J., Toledo, R. T., Kerr, W. L., & Armstead, D. (2008). Hydrodynamic cavitation: Characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice. Journal of Food Science, 73(6), M298–M303.
- Mohideen, F. W., Solval, K. M., Li, J., Zhang, J., Chouljenko, A., Chotiko, A., Prudente, A. D., Bankston, J. D., & Sathivel, S. (2015). Effect of continuous ultra-sonication on microbial counts and physico-chemical properties of blueberry (Vaccinium corymbosum) juice. LWT-Food Science and Technology, 60(1), 563–570.
- Mokhatab, S., Poe, W. A., & Mak, J. Y. (2019). Chapter 20 - gas processing plant automation. In S. Mokhatab, W. A. Poe, & J. Y. Mak (Eds.), Handbook of natural gas transmission and processing ( Fourth ed., pp. 615–642). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-815817-3.00020-4
10.1016/B978-0-12-815817-3.00020-4 Google Scholar
- Mutiat, B., Abiodun, O., Kolawole, F., Kayode, R., & Olushola, O. E. (2017). Physicochemical and sensory properties of blends of pineapple-carrot wine. Journal of Microbiology, Biotechnology and Food Sciences, 7, 306–311. https://doi.org/10.15414/jmbfs.2017/18.7.3.306-311
10.15414/jmbfs.2017/18.7.3.306?311 Google Scholar
- Nadeem, M., Ubaid, N., Qureshi, T. M., Munir, M., & Mehmood, A. (2018). Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrasonics Sonochemistry, 45, 1–6.
- Nakashima, K., Ebi, Y., Shibasaki-Kitakawa, N., Soyama, H., & Yonemoto, T. (2016). Hydrodynamic cavitation reactor for efficient pretreatment of lignocellulosic biomass. Industrial & Engineering Chemistry Research, 55(7), 1866–1871.
- Niu, M., Huang, J., Jin, Y., Wu, C., & Zhou, R. (2018). Effect of oak matrix (barrel and toasted chips) on the volatiles in Goji (Lycium Chinese) wine. Journal of the Institute of Brewing, 124(1), 68–76.
- Oladejo, A. O., Ma, H., Qu, W., Zhou, C., & Wu, B. (2017). Effects of ultrasound on mass transfer kinetics, structure, carotenoid and vitamin C content of osmodehydrated sweet potato (Ipomea batatas). Food and Bioprocess Technology, 10(6), 1162–1172.
- Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100.
- Otegbayo, B. O., Akwa, I. M., & Tanimola, A. R. (2020). Physico-chemical properties of beetroot (Beta vulgaris L.) wine produced at varying fermentation days. Scientific African, 8, e00420.
10.1016/j.sciaf.2020.e00420 Google Scholar
- Panda, D., & Manickam, S. (2019). Cavitation technology—The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Applied Sciences, 9(4), 766.
- Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313.
- Pons-Mercadé, P., Giménez, P., Gombau, J., Vilomara, G., Conde, M., Cantos, A., Rozès, N., Canals, J.-M., & Zamora, F. (2021). Oxygen consumption rate of lees during sparkling wine (Cava) aging; influence of the aging time. Food Chemistry, 342, 128238.
- Preece, K. E., Hooshyar, N., Krijgsman, A. J., Fryer, P. J., & Zuidam, N. J. (2017). Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation. Innovative Food Science & Emerging Technologies, 41, 47–55.
- Rajashri, K., Roopa, B. S., Negi, P. S., & Rastogi, N. K. (2020). Effect of ozone and ultrasound treatments on polyphenol content, browning enzyme activities, and shelf life of tender coconut water. Journal of Food Processing and Preservation, 44(3), e14363.
- Recamales, Á. F., Sayago, A., González-Miret, M. L., & Hernanz, D. (2006). The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Research International, 39(2), 220–229.
- Riedel, M., Riederer, M., Becker, D., Herran, A., Kullaya, A., Arana-López, G., Peña-Rodríguez, L., Billotte, N., Sniady, V., Rohde, W., & Ritter, E. (2009). Cuticular wax composition in Cocos nucifera L.: Physicochemical analysis of wax components and mapping of their QTLs onto the coconut molecular linkage map. Tree Genetics & Genomes, 5(1), 53–69.
- Saharan, V. K., Pinjari, D. V., Gogate, P. R., & Pandit, A. B. (2014). Advanced oxidation technologies for wastewater treatment: An overview. Elsevier, Butterworth, Heinemann.
10.1016/B978-0-08-099968-5.00003-9 Google Scholar
- Saharan, V. K., Badve, M. P., & Pandit, A. B. (2011). Degradation of reactive red 120 dye using hydrodynamic cavitation. Chemical Engineering Journal, 178, 100–107.
- Saharan, V. K., Rizwani, M. A., Malani, A. A., & Pandit, A. B. (2013). Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrasonics Sonochemistry, 20(1), 345–353.
- Saikia, S., Mahnot, N. K., Mahanta, C. L., Chattopadhyay, P., & Agnihotri, A. (2020). Optimisation of a carambola pomace fibre fortified mix fruit beverage powder, its characterization and in vivo study. Journal of the Saudi Society of Agricultural Sciences, 19(1), 14–21.
10.1016/j.jssas.2018.03.006 Google Scholar
- Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282.
- Santos, M. C., Nunes, C., Ferreira, A. S., Jourdes, M., Teissedre, P.-L., Rodrigues, A., Amado, O., Saraiva, J. A., & Coimbra, M. A. (2019). Comparison of high pressure treatment with conventional red wine aging processes: impact on phenolic composition. Food Research International, 116, 223–231.
- Santos, V. O., Rodrigues, S., & Fernandes, F. A. N. (2018). Improvements on the stability and vitamin content of acerola juice obtained by ultrasonic processing. Food, 7(5), 68.
- Sharma, A., Verma, R., Kumar, R., Chauhan, R., & Sharma, V. (2020). Chemometric analysis of ATR-FTIR spectra of fingernail clippings for classification and prediction of sex in forensic context. Microchemical Journal, 159, 105504.
- Simas, D. L. R., de Amorim, S. H. B. M., Goulart, F. R. V., Alviano, C. S., Alviano, D. S., & da Silva, A. J. R. (2017). Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. Industrial Crops and Products, 98, 108–115.
- Sivakumar, M., & Pandit, A. B. (2002). Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrasonics Sonochemistry, 9(3), 123–131.
- Sonawane, S. H., Gumfekar, S. P., Kate, K. H., Meshram, S. P., Kunte, K. J., Ramjee, L., Mahajan, C. M., Parande, M. G., & Ashokkumar, M. (2010). Hydrodynamic cavitation-assisted synthesis of nanocalcite. International Journal of Chemical Engineering, 2010.
10.1155/2010/242963 Google Scholar
- Sun, X., Xuan, X., Ji, L., Chen, S., Liu, J., Zhao, S., Park, S., Yoon, J. Y., Om, A. S., Hilares, R. T., Dos Santos, J. G., Shiguematsu, N. B., Ahmed, M. A., da Silva, S. S., & Santos, J. C. (2021). A novel continuous hydrodynamic cavitation technology for the inactivation of pathogens in milk. Ultrasonics Sonochemistry, 71, 192–197.
10.1016/j.ultsonch.2020.105382 Google Scholar
- Sun, Y., Zhong, L., Cao, L., Lin, W., & Ye, X. (2015). Sonication inhibited browning but decreased polyphenols contents and antioxidant activity of fresh apple (Malus pumila mill, cv. Red Fuji) juice. Journal of Food Science and Technology, 52(12), 8336–8342.
- Tao, Y., García, J. F., & Sun, D. W. (2014). Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition, 54(6), 817–835.
- Teodosiu, C., Gabur, I., Cotea, V. V., Peinado, R. A., & de Lerma, N. (2019). Evaluation of aroma compounds in the process of wine ageing with oak chips. Food, 8(12), 662.
- Thivya, P., Bhosale, Y. K., Anandakumar, S., Hema, V., & Sinija, V. R. (2021). Exploring the effective utilization of shallot stalk waste and tamarind seed for packaging film preparation. Waste and Biomass Valorization, 12, 1–16.
10.1007/s12649-021-01402-4 Google Scholar
- Tiwari, B. K., O'Donnell, C. P., & Cullen, P. J. (2009). Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends in Food Science & Technology, 20(3–4), 137–145.
- Vigneshwaran, G., More, P. R., & Arya, S. S. (2022). Non-thermal hydrodynamic cavitation processing of tomato juice for physicochemical, bioactive, and enzyme stability: Effect of process conditions, kinetics, and shelf-life extension. Current Research in Food Science, 5, 313–324.
- Vilanova, M., Pretorius, I. S., & Henschke, P. A. (2015). Influence of diammonium phosphate addition to fermentation on wine biologicals. In V. Preedy (Ed.), Processing and impact on active components in food (pp. 483–491). Academic Press.
10.1016/B978-0-12-404699-3.00058-5 Google Scholar
- Wang, J., Wang, J., Ye, J., Vanga, S. K., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136.
- Wu, Z., Ferreira, D. F., Crudo, D., Bosco, V., Stevanato, L., Costale, A., & Cravotto, G. (2019). Plant and biomass extraction and valorisation under hydrodynamic cavitation. PRO, 7(12), 965.
- Yuan, J.-F., Chen, Z.-Y., Wang, D.-H., Gong, M.-G., & Qiu, Z.-J. (2021). Microwave-induced free radicals production in red wine and model wine by electron paramagnetic resonance spin trapping. Journal of Food Processing and Preservation, 45(5), e15407.
- Zhang, G., Chen, W., Chen, W., & Chen, H. (2018). Improving the quality of matured coconut (Cocos nucifera Linn.) water by low alcoholic fermentation with Saccharomyces cerevisiae: antioxidant and volatile profiles. Journal of Food Science and Technology, 55(3), 964–976. https://doi.org/10.1007/s13197-017-3004-y