Effect of different coating materials on freeze-drying encapsulation of bioactive compounds from fermented tea leaf wastewater
Kavinna Ravichai
Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
Search for more papers by this authorCorresponding Author
Rattana Muangrat
Division of Food Process Engineering, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
Food Drying Technology Research Unit, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
Correspondence
Rattana Muangrat, Division of Food Process Engineering, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100 Thailand.
Email: [email protected], [email protected]
Search for more papers by this authorKavinna Ravichai
Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
Search for more papers by this authorCorresponding Author
Rattana Muangrat
Division of Food Process Engineering, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
Food Drying Technology Research Unit, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
Correspondence
Rattana Muangrat, Division of Food Process Engineering, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100 Thailand.
Email: [email protected], [email protected]
Search for more papers by this authorAbstract
Bioactive compounds present in concentrated fermented Miang wastewater (CFMW) were encapsulated by freeze drying using various coating materials (maltodextrin, gum arabic, and modified starch) and CFMW-to-coating material ratios. The highest encapsulation efficiency of 98.05% was produced with gum arabic coating and 10:1 CFMW-to-coating ratio. The encapsulated Miang powder contained gallocatechin, epigallocatechin, catechin, epicatechin, gallic acid, and caffeine content of approximately 8.33, 27.81, 76.53, 8.01, 4.44, and 257.47 mg/100 g dry Miang powder (DMP), respectively. The antioxidant values (IC50) of the Miang powder were 22.44 µg/ml against DPPH radicals and 334.33 µg/mL against ABTS radicals. Similarly to the freeze-dried sample, spray-dried Miang powder formulated with gum arabic coating, which were prepared for comparison, achieved the encapsulation efficiency 85.18%, total catechins 105.22 mg/100 g DMP, DPPH IC50 value 21.88 µg/ml and ABTS IC50 value 366.32 µg/ml. Additionally, the encapsulated Miang powder could be utilized to enhance the value of low-quality tea drink.
Practical applications
The wastewater from fermented tea leaf (Miang) production is an interesting natural source of phenolic compounds, including the antioxidants gallocatechin, epigallocatechin, catechin, epicatechin, and gallocatechin gallate. Freeze drying with gum arabic as a coating material can be utilized to encapsulate these bioactive compounds present in the wastewater of fermented Miang with high encapsulation efficiency. Encapsulated Miang powder could be used to enhance the value of low-quality tea drink. Therefore, encapsulated Miang powder is a natural bioactive compound source with the potential as an ingredient in food and beverage production.
CONFLICTS OF INTEREST
The authors have declared no conflicts of interest for this article.
REFERENCES
- Ahmad, M., Mudgil, P., Ganib, A., Hamed, F., Masoodi, F. A., & Maqsood, S. (2019). Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry, 270, 95–104. https://doi.org/10.1016/j.foodchem.2018.07.024
- Ahmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014
- Akdeniz, B., Sumnu, G., & Sahin, S. (2017). The effects of maltodextrin and gum arabic on encapsulation of onion skin phenolic compounds. Chemical Engineering Transactions, 57, 1–6.
- Alkali, Z. J., Baharin, B. S., Mohammed, A. S., & Abas, F. (2016). Microencapsulation of green tea extracts and its effects on the physico-chemical and functional properties of mango drinks. International Journal of Basic & Applied Sciences, 16, 16–32.
- Association of Official Analytical Chemists. (1980). Official methods of analysis ( 13th ed.). Washington, D.C.: Author.
- Association of Official Analytical Chemists. (2000). Official methods of analysis ( 17th ed.). Washington, D.C.: Author.
- Astill, C., Birch, M. R., Dacombe, C., Humphrey, P. G., & Martin, P. T. (2001). Factors affecting the caffeine and polyphenol contents of black and green tea infusions. Journal of Agricultural and Food Chemistry, 49, 5340–5347. https://doi.org/10.1021/jf010759
- Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. Journal of Food Engineering, 199, 1–8. https://doi.org/10.1016/j.jfoodeng.2016.11.014
- Barbosa, J., Borges, S., Amorim, M., Pereira, M. J., Oliveira, A., Pintado, M. E., & Teixeira, P. (2015). Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods, 17, 340–351. https://doi.org/10.1016/j.jff.2015.06.001
- Beretta, G., Granata, P., Ferrero, M., Orioli, M., & Facino, R. M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533, 185–191. https://doi.org/10.1016/j.aca.2004.11.010
- Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6, 420–428. https://doi.org/10.1016/j.ifset.2005.05.003
- Chan, E. W. C., Lim, Y. Y., & Chew, Y. L. (2007). Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chemistry, 102, 1214–1222. https://doi.org/10.1016/j.foodchem.2006.07.009
- Cilek, B., Luca, A., Hasirci, V., Sahin, S., & Sumnu, G. (2012). Microencapsulation of phenolic compounds extracted from sour cherry pomace: Effect of formulation, ultrasonication time and core to coating ratio. European Food Research and Technology, 235, 587–596. https://doi.org/10.1007/s00217-012-1786-8
- Corrêa-Filho, L. C., Moldão-Martins, M., & Alves, V. D. (2019). Advances in the application of microcapsules as carriers of functional compounds for food products. Applied Sciences, 9, 571. https://doi.org/10.3390/app9030571
- Costa, S. S., Machado, B. A. S., Martin, A. R., Bagnara, F., Ragadalli, S. A., & Alves, A. R. C. (2015). Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9, 462–470. https://doi.org/10.5897/AJFS2015.1279
- Dorkbuakaew, N., Ruengnet, P., Pradmeeteekul, P., Nimkamnerd, J., Nantitanon, W., & Thitipramote, N. (2016). Bioactive compounds and antioxidant activities of Camellia sinensis var. assamica in different leave maturity from Northern Thailand. International Food Research Journal, 23, 2291–2295.
- Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols—A review. Trends in Food Science & Technology, 21, 510–523. https://doi.org/10.1016/j.tifs.2010.08.003
- Food and Agricultural Organisation. (2001). Notification of the Ministry of Public Health No. 196 B.E. 2543 (2000) Re: Tea. Bangkok, Thailand.
- Gabas, A. L., Telis, V. R. N., Sobral, P. J. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 82, 246–252. https://doi.org/10.1016/j.jfoodeng.2007.02.029
- Gadkari, P. V., & Balaraman, M. (2015). Catechins: Sources, extraction and encapsulation: A review. Food and Bioproducts Processing, 93, 122–138. https://doi.org/10.1016/j.fbp.2013.12.004
- Gibbs, B. F., Kermasha, S., Alli, I., & Mulligan, C. N. (1999). Encapsulation in the food industry: A review. International Journal of Food Sciences and Nutrition, 50, 213–224. https://doi.org/10.1080/096374899101256
- Gramza-Michalowska, A., Kobus-Cisowska, J., Kmiecik, D., Korczak, J., Helak, B., Dziedzic, K., & Górecka, D. (2016). Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chemistry, 211, 448–454. https://doi.org/10.1016/j.foodchem.2016.05.048
- Gupta, C., Chawla, P., Arora, S., Tomar, S. K., & Singh, A. K. (2015). Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method—Milk fortification. Food Hydrocolloids, 43, 622–628. https://doi.org/10.1016/j.foodhyd.2014.07.021
- Harbowy, M. E., Balentine, D. A., Davies, A. P., & Cai, Y. (1997). Tea chemistry. Critical Reviews in Plant Sciences, 16, 415–480. https://doi.org/10.1080/07352689709701956
- Kha, T. C., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying condition on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98, 385–392. https://doi.org/10.1016/j.jfoodeng.2010.01.016
- Krishnan, S., Bhosale, R., & Singhal, R. S. (2005). Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydrate Polymers, 61, 95–102. https://doi.org/10.1016/j.carbpol.2005.02.020
- Laokuldilok, T., & Kanha, N. (2015). Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT - Food Science and Technology, 64, 405–411. https://doi.org/10.1016/j.lwt.2015.05.015
- Loksuwan, J. (2007). Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21, 928–935. https://doi.org/10.1016/j.foodhyd.2006.10.011
- Luca, A., Cilek, B., Hasirci, V., Sahin, S., & Sumnu, G. (2013). Effect of degritting of phenolic extract from sour cherry pomace on encapsulation efficiency—Production of nano-suspension. Food and Bioprocess Technology, 6, 2494–2502. https://doi.org/10.1007/s11947-012-0880-z
- Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011
- Muangrat, R., Ravichai, K., & Jirarattanarangsri, W. (2019). Encapsulation of polyphenols from fermented wastewater of Miang processing by freeze drying using a maltodextrin/gum Arabic mixture as coating material. Journal of Food Processing and Preservation, 43(9), e13908. https://doi.org/10.1111/jfpp.13908
- Ohta, T., Nakamura, S., Nakashima, S., Matsumoto, T., Ogawa, K., Fujimoto, K., … Matsuda, M. (2015). Acylated oleanane-type triterpene oligoglycosides from the flower buds of Camellia sinensis var. assamica. Tetrahedron, 71, 846–851. https://doi.org/10.1016/j.tet.2014.12.049
- Oliveira, R. M. M. D. (2012). Quantification of catechins and caffeine from green tea (Camellia sinensis) infusions, extract, and ready-to-drink beverages. Ciência e Tecnologia de Alimentos, 32, 163–166. https://doi.org/10.1590/S0101-20612012005000009
10.1590/S0101-20612012005000009 Google Scholar
- Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205
- Özvural, E. B., Huang, Q., & Chikindas, M. L. (2016). The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT - Food Science and Technology, 68, 385–390. https://doi.org/10.1016/j.lwt.2015.12.036
- Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125, 892–902. https://doi.org/10.1016/j.foodchem.2010.09.063
- Peranginangin, J. M., Saptarini, O., Ismawati, E., Wihardy, R. A., & Fadly, R. (2014). Effect of steeped black tea (Camellia sinensis (L.) var. assamica) on immunoglobulin titer and lymphocyte proliferation in responses to hepatitis B vaccine in mice. Procedia Chemistry, 13, 128–133. https://doi.org/10.1016/j.proche.2014.12.016
- Phromrukachat, S., Tiengburanatum, N., & Meechui, J. (2010). Assessment of active ingredients in pickled tea. Asian Journal of Food and Agro-Industry, 3, 312–318.
- Pitchaon, M., Tanawan, W., & Thepkunya, H. (2013). Tamarind kernel powder, gum arabic and maltodextrin as a novel combination for encapsulating agents of phenolic antioxidants. International Food Research Journal, 20, 645–652.
- Poomkokrak, J., Niamnuy, C., Choicharoen, K., & Devahastin, S. (2015). Encapsulation of soybean extract using spray drying. Journal of Food Science and Agricultural Technology, 1(1), 105–110.
- Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46, 386–392. https://doi.org/10.1016/j.cep.2006.06.020
- Ramírez, M. J., Giraldo, G. I., & Orrego, C. E. (2015). Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, 277, 89–96. https://doi.org/10.1016/j.powtec.2015.02.060
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Rigon, R. T., & Noreña, C. P. Z. (2016). Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (Rubus fruticosus). Journal of Food Science and Technology, 53, 1515–1524. https://doi.org/10.1007/s13197-015-2111-x
- Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386–1394. https://doi.org/10.1111/j.1365-2621.2010.02270.x
- Robert, P., Torres, V., Garcia, P., Vergara, C., & Sáenz, C. (2015). The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide–proteins as encapsulating agents. LWT - Food Science and Technology, 60, 1039–1045. https://doi.org/10.1016/j.lwt.2014.10.038
- Samakradhamrongthai, R., Thakeow, P., Kopermsub, P., & Utama-ang, N. (2015). Encapsulation of Michelia alba D.C. extract using spray drying and freeze drying and application on Thai dessert from rice flour. International Journal of Food Engineering, 1, 77–85. https://doi.org/10.18178/ijfe.1.2.77-85
- Sampanvejsobha, S., Sumonpun, P., & Laohakunitand, N. (2013). Contents of caffeine and catechins in Miang produced from major sources in Thailand. Agricultural Science Journal, 44, 597–600.
- Scharbert, S., Jezussek, M., & Hofmann, T. (2004). Evaluation of the taste contribution of theaflavins in black tea infusions using the taste activity concept. European Food Research and Technology, 218, 442–447. https://doi.org/10.1007/s00217-004-0888-3
- Suhag, Y., Nayik, G. A., & Nanda, V. (2016). Effect of gum arabic concentration and inlet temperature during spray drying on physical and antioxidant properties of honey powder. Journal of Food Measurement and Characterization, 10, 350–356. https://doi.org/10.1007/s11694-016-9313-4
- Vuong, Q. V., Golding, J. B., Nguyen, M., & Roach, P. D. (2010). Extraction and isolation of catechins from tea. Journal of Separation Science, 33, 3415–3428. https://doi.org/10.1002/jssc.201000438
- Wilkowska, A., Ambroziak, W., Czyżowska, A., & Adamiec, J. (2016). Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish Journal of Food and Nutrition Sciences, 66, 11–16. https://doi.org/10.1515/pjfns-2015-0015
- Yamasaki, K., Hashimoto, A., Kokusenya, Y., Miyamoto, T., & Sato, T. (1994). Electrochemical method for estimating the antioxidative effects of methanol extracts of crude drugs. Chemical and Pharmaceutical Bulletin (Tokyo), 42, 1663–1665. https://doi.org/10.1248/cpb.42.1663
- Zhang, L., & Lin, Y. (2008). Tannins from Canarium album with potent antioxidant activity. Journal of Zhejiang University Science B, 9, 407–415. https://doi.org/10.1631/jzus.B0820002
- Zokti, J., Badlishah, A., Baharin, S., Abdulkarim, S. M., & Abas, F. (2016). Microencapsulation of green tea extracts and its effects on the physico-chemical and functional properties of mango drinks. International Journal of Basic & Applied Sciences IJBAS-IJENS, 16, 16–32.
- Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulated for use in food products or processes and methods. In N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation technologies for active food ingredients and food processing (pp. 3–29). New York, NY: Springer Science and Business Media LLC.
10.1007/978-1-4419-1008-0_2 Google Scholar