Fabrication of Crystalline Si Thin Films for Photovoltaics
Junyang An
School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorYa Shen
School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorPere Roca i Cabarrocas
LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128 France
Search for more papers by this authorCorresponding Author
Wanghua Chen
School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorJunyang An
School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorYa Shen
School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorPere Roca i Cabarrocas
LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128 France
Search for more papers by this authorCorresponding Author
Wanghua Chen
School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorAbstract
Crystalline Si (c-Si) thin films have been widely studied for their application to solar cells and flexible electronics. However, their application at large scale is limited by their fabrication process. As reviewed in this paper, many approaches have been studied, but only some of them have been made into large-scale industrial production. The standard wire sawing of Si ingots cannot be scaled down to produce thin c-Si wafers and films due to the brittle nature of c-Si material, the resulting significant thickness variations, and the waste of material. Therefore, techniques based on the kerf-less processes including “top-down” and “bottom-up” approaches have been developed in recent decades. In this review, photovoltaic applications of thin c-Si wafers with thicknesses ranging from 50 μm down to 1 μm are presented first. Then, methods to fabricate c-Si thin films based on both approaches are detailed, including slim-cut, “smart-cut,” epi-free, as well as various growth processes such as molecular beam epitaxy, liquid phase epitaxy, ion beam, and chemical vapor deposition processes at a wide range of growth temperatures, from 1000 °C down to 150 °C. The advantages and disadvantages of these methods are presented and compared.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 E. A. Alharbi, A. Y. Alyamani, D. J. Kubicki, A. R. Uhl, B. J. Walder, A. Q. Alanazi, J. Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M. H. Alotaibi, J.-E. Moser, S. M. Zakeeruddin, F. Giordano, L. Emsley, M. Grätzel, Nat. Commun. 2019, 10, 3008.
- 2 J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, N.-G. Park, Chem. Rev. 2020, 120, 7867.
- 3 M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
- 4 M. I. Kabir, S. A. Shahahmadi, V. Lim, S. Zaidi, K. Sopian, N. Amin, Int. J. Photoenergy 2012, 2012, 460919.
- 5
H. Kang, IOP Conf. Ser. Earth Environ. Sci. 2021, 726, 012001.
10.1088/1755-1315/726/1/012001 Google Scholar
- 6
Y. B. M. Yusoff, Comprehensive Guide on Organic and Inorganic Solar Cells (Eds: M. Akhtaruzzaman, V. Selvanathan), Academic Press, Cambridge, MA 2022, pp. 85–113.
10.1016/B978-0-323-85529-7.00001-3 Google Scholar
- 7 M. Singh, J. Jiu, T. Sugahara, K. Suganuma, ACS Appl. Mater. Interfaces 2014, 6, 16297.
- 8 Zhou, J.; Li, C., E3S Web Conf. 2021, 267, 02031.
- 9 A. Aho, R. Isoaho, M. Raappana, T. Aho, E. Anttola, J. Lyytikäinen, A. Hietalahti, V. Polojärvi, A. Tukiainen, J. Reuna, L. Peltomaa, M. Guina, Progr. Photovolt. Res. Appl. 2021, 29, 869.
- 10 P. Albert, A. Jaouad, G. Hamon, M. Volatier, C. E. Valdivia, Y. Deshayes, K. Hinzer, L. Béchou, V. Aimez, M. Darnon, Progr. Photovolt. Res. Appl. 2021, 29, 990.
- 11 J. Chen, C. E. Packard, Sol. Energy Mater. Sol. Cells 2021, 225, 111018.
- 12 V. Raj, T. Haggren, W. W. Wong, H. H. Tan, C. Jagadish, J. Phys. D: Appl. Phys. 2021, 55, 143002.
- 13 Y. Shoji, R. Oshima, K. Makita, A. Ubukata, T. Sugaya, Sol. Energy 2021, 224, 142.
- 14 A. Cavalli, N. Alkurd, S. Johnston, D. R. Diercks, D. M. Roberts, B. E. Ley, J. Simon, D. L. Young, C. E. Packard, A. J. Ptak, IEEE J. Photovolt. 2022, 12, 337.
- 15 B. Conrad, B. H. Hamadani, IEEE J. Photovolt. 2022, 12, 798.
- 16 H. Mizuno, K. Makita, H. Sai, T. Mochizuki, T. Matsui, H. Takato, R. Müller, D. Lackner, F. Dimroth, T. Sugaya, ACS Appl. Mater. Interfaces 2022, 14, 11322.
- 17 P. Cheng, X. Zhan, Chem. Soc. Rev. 2016, 45, 2544.
- 18 L. Meng, J. You, Y. Yang, Nat. Commun. 2018, 9, 5265.
- 19 M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. Y. Ho-Baillie, Progr. Photovolt. Res. Appl. 2018, 26, 3.
- 20 K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2017, 2, 17032.
- 21
J. W. Balde, in Foldable Flex and Thinned Silicon Multichip Packaging Technology, Springer, Berlin, Germany 2003.
10.1007/978-1-4615-0231-9 Google Scholar
- 22 R. Teixeira, K. De Munck, P. De Moor, K. Baert, B. Swinnen, C. Van Hoof, A. Kuttel, ECS Trans. 2007, 9, 113.
- 23 G. Li, C. Xiao, S. Zhang, R. Sun, Y. Wu, J. Mater. Process. Technol. 2022, 301, 117453.
- 24 J. Seok, C. P. Sukam, A. T. Kim, J. A. Tichy, T. S. Cale, Wear 2004, 257, 496.
- 25
K. C. Cadien, L. Nolan, in Handbook of Thin Film Deposition, 4th ed. (Eds: L. K. Seshan, D. Schepis), William Andrew Publishing, Norwich, NY 2018, pp. 317–357.
10.1016/B978-0-12-812311-9.00010-4 Google Scholar
- 26 N. Watanabe, T. Miyazaki, M. Aoyagi, K. Yoshikawa, in 14th Electronics Packaging Technology Conf. (EPTC), IEEE, Piscataway, NJ 2012, pp. 355–359.
- 27 I. J. Afa, G. López, P. R. O. Villasclaras, J. Optoelectron. Eng. 2015, 3, 7.
- 28 I. Massiot, A. Cattoni, S. Collin, Nat. Energy 2020, 5, 959.
- 29
Bhushan Sopori, S. Devayajanam , P. Basnyat, AIMS Mater. Sci. 2016, 3, 669.
10.3934/matersci.2016.2.669 Google Scholar
- 30 W. Chen, X. Liu, M. Li, C. Yin, L. Zhou, Mater. Sci. Semicond. Process. 2014, 27, 220.
- 31 J. Walters, K. Sunder, O. Anspach, R. P. Brooker, H. Seigneur, in IEEE 44th Photovoltaic Specialist Conf. (PVSC), IEEE, Piscataway, NJ 2016, pp. 0724–0728.
- 32 H.-D. Um, I. Hwang, D. Choi, K. Seo, Acc. Mater. Res. 2021, 2, 701.
- 33 C. Yang, K. Moon, J.-W. Song, J. Kim, J.-H. Lee, J.-H. Lim, B. Yoo, J. Electrochem. Soc. 2018, 165, D243.
- 34 H.-S. Lee, J. Suk, H. Kim, J. Kim, J. Song, D. S. Jeong, J.-K. Park, W. M. Kim, D.-K. Lee, K. J. Choi, B.-K. Ju, T. S. Lee, I. Kim, Sci. Rep. 2018, 8, 3504.
- 35 H.-S. Lee, J. M. Choi, B. Jung, J. Kim, J. Song, D. S. Jeong, J.-K. Park, W. M. Kim, D.-K. Lee, T. S. Lee, W. S. Lee, K.-S. Lee, B.-K. Ju, I. Kim, Sci. Rep. 2019, 9, 19736.
- 36 R. A. Rao, L. Mathew, S. Saha, S. Smith, D. Sarkar, R. Garcia, R. Stout, A. Gurmu, E. Onyegam, D. Ahn, D. Xu, D. Jawarani, J. Fossum, S. Banerjee, in 37th IEEE Photovoltaic Specialists Conf., IEEE, Piscataway, NJ 2011, pp. 001504–001507.
- 37 M. M. Hilali, S. Saha, E. Onyegam, R. Rao, L. Mathew, S. K. Banerjee, Appl. Opt. 2014, 53, 6140.
- 38 V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, Progr. Photovolt. Res. Appl. 2011, 19, 844.
- 39 V. Depauw, C. Trompoukis, I. Massiot, W. Chen, A. Dmitriev, P. R. Cabarrocas, I. Gordon, J. Poortmans, Nano Futures 2017, 1, 021001.
- 40 J.-E. Hong, Y. Lee, S.-I. Mo, H.-S. Jeong, J.-H. An, H.-E. Song, J. Oh, J. Bang, J.-H. Oh, K.-H. Kim, Adv. Mater. 2021, 33, 2103708.
- 41 F. Dross, K. Baert, T. Bearda, J. Deckers, V. Depauw, O. El Daif, I. Gordon, A. Gougam, J. Govaerts, S. Granata, R. Labie, X. Loozen, R. Martini, A. Masolin, B. O’Sullivan, Y. Qiu, J. Vaes, D. Van Gestel, J. Van Hoeymissen, A. Vanleenhove, K. Van Nieuwenhuysen, S. Venkatachalam, M. Meuris, J. Poortmans, Progr. Photovolt. Res. Appl. 2012, 20, 770.
- 42 R. Brendel, R. Auer, H. Artmann, Progr. Photovolt. Res. Appl. 2001, 9, 217.
- 43 S. Kommera, in 28th European Photovoltaic Solar Energy Conf. and Exhibition , WIP, Munich, Germany 2013.
- 44 R. Cariou, W. Chen, I. Cosme-Bolanos, J.-L. Maurice, M. Foldyna, V. Depauw, G. Patriarche, A. Gaucher, A. Cattoni, I. Massiot, S. Collin, E. Cadel, P. Pareige, Roca, P. I Cabarrocas, Progr. Photovolt. Res. Appl. 2016, 24, 1075.
- 45 A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. C Lalouat, E. Drouard, C. Seassal, P. Roca i Cabarrocas, S. Collin, Nano Lett. 2016, 16, 5358.
- 46 Z. Liu, S. E. Sofia, H. S. Laine, M. Woodhouse, S. Wieghold, I. M. Peters, T. Buonassisi, Energy Environ. Sci. 2020, 13, 12.
- 47 L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Adv. Phys. X 2019, 4, 1548305.
- 48 S. Bhattacharya, I. Baydoun, M. Lin, S. John, Phys. Rev. Appl. 2019, 11, 014005.
- 49 F. Dross, A. Milhe, J. Robbelein, I. Gordon, P.-O. Bouchard, G. Beaucarne, J. Poortmans, in 33rd IEEE Photovoltaic Specialists Conf., 2008, IEEE, Piscataway, NJ, pp. 1–5.
- 50 H.-S. Yang, J. Kim, S. Kim, N. S. A. Eom, S. Kang, C.-S. Han, S. H. Kim, D. Lim, J.-H. Lee, S. H. Park, J. W. Choi, C.-L. Lee, B. Yoo, J.-H. Lim, Front. Chem. 2018, 6, 600.
- 51 F. Dross, J. Robbelein, B. Vandevelde, E. Van Kerschaver, I. Gordon, G. Beaucarne, J. Poortmans, Appl. Phys. A 2007, 89, 149.
- 52 P. Bellanger, P.-O. Bouchard, M. Bernacki, J. Serra, Mater. Res. Express 2015, 2, 046203.
- 53 R. Niepelt, J. Hensen, A. Knorr, V. Steckenreiter, S. Kajari-Schöder, R. Brendel, Energy Proc. 2014, 55, 570.
- 54 R. A. Rao, L. Mathew, D. Sarkar, S. Smith, S. Saha, R. Garcia, R. Stout, A. Gurmu, M. Ainom, E. Onyegam, D. Xu, D. Jawarani, J. Fossum, S. Banerjee, U. Das, A. Upadhyaya, A. Rohatgi, Q. Wang, in 38th IEEE Photovoltaic Specialists Conf., IEEE, Piscataway, NJ 2012, pp. 001837–001840.
- 55 F. Kaule, M. Swoboda, C. Beyer, R. Rieske, A. Ajaj, W. D. Drescher, S. Schoenfelder, J. Richter, MRS Commun. 2018, 8, 127.
- 56 S. Schoenfelder, F. Kaule, S. Schindler, K. Petter, R. Lantzsch, C. Beyer, J. Richter, in 33rd European Photovoltaic Solar Energy Conf. and Exhibition , WIP, Munich, Germany 2017.
- 57 M. Bruel, B. Aspar, A.-J. Auberton-Hervé, Jpn. J. Appl. Phys. 1997, 36, 1636.
- 58 B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, B. Ghyselen, J. Electron. Mater. 2001, 30, 834.
- 59 V. H. I. Radu, in Layer Transfer of Semiconductors and Complex Oxides by Helium and, or Hydrogen Implantation and Wafer Bonding, Martin-Luther-University of Halle-Wittenberg, Halle, Germany 2003.
- 60 I. Mizushima, T. Sato, S. Taniguchi, Y. Tsunashima, Appl. Phys. Lett. 2000, 77, 3290.
- 61 B. Andreas, R. Stefan, in NexWafe GmbH – Fraunhofer ISE Starts a New Spin-Off Company – Kerfless Wafer Technology to Bring Cost of Photovoltaics Down and Reduce Waste., Vol. 15, Fraunhofer Institute for Solar Energy Systems ISE, Freiburg 2015.
- 62 M. Tanielian, S. Blackstone, R. Lajos, J. Electrochem. Soc. 1985, 132, 507.
- 63 S. Bedell, K. Fogel, P. Lauro, D. Shahrjerdi, J. Ott, D. Sadana, J. Phys. D: Appl. Phys. 2013, 46, 152002.
- 64 A. Masolin, in Fabrication and Characterization of Ultra-Thin Silicon Crystalline Wafers for Photovoltaic Applications Using a Stress-Induced Lift-Off Method, Katholieke Universiteit Leuven, Leuven, Belgium 2012.
- 65 P. Bellanger, A. Masolin, D. Pera, L. Costa, J. Poortmans, R. Mertens, J.M. Serra, in 27th European Photovoltaic Solar Energy Conf. and Exhibition, WIP, Munich, Germany 2012, pp 1042–1044.
- 66 P. Bellanger, M. C. Brito, D. M. Pera, I. Costa, G. Gaspar, R. Martini, M. Debucquoy, J. M. Serra, IEEE J. Photovolt. 2014, 4, 1228.
- 67 Serra, J. M.; Bellanger, P.; Lobato, K.; Martini, R.; Debucquoy, M.; Poortmans, J. in IEEE 39th Photovoltaic Specialists Conf. (PVSC), IEEE, New York City, United States 2013, pp 0177–0180.
- 68 Y. Lee, B. Gupta, H. H. Tan, C. Jagadish, J. Oh, S. Karuturi, iScience 2021, 24, 102921.
- 69 R. Martini, M. Gonzalez, F. Dross, A. Masolin, J. Vaes, D. Frederickx, J. Poortmans, Energy Proc. 2012, 27, 567.
- 70 J. Samuels, S. G. Roberts, P. B. Hirsch, Mater. Sci. Eng. A 1988, 105–106, 39.
- 71 M. R. Snure, E. W. Blanton, J. L. Brown, A. M. Hilton, US20220216109A1, 2022.
- 72 Q. Y. Tong, K. Gutjahr, S. Hopfe, U. Gösele, B. Lee, Appl. Phys. Lett. 1997, 70, 1390.
- 73 M. Bruel, Mater. Res. Innov. 1999, 3, 9.
- 74 C. Lagahe, N. Sousbie, S. Sartori, H. Moriceau, A. Soubie, B. Aspar, P. Nguyen, B. Blondeau, Proc. Electrochem. Soc. 2003, 19, 346.
- 75 R. E. Hurley, S. Suder, H.S Gamble, Vacuum 2005, 78, 167.
- 76 C. Himcinschi, I. Radu, F. Muster, R. Singh, M. Reiche, M. Petzold, U. Gösele, S. H. Christiansen, Solid-State Electron. 2007, 51, 226.
- 77 B. Wang, B. Gu, H. Zhang, X. Feng, Acta Mech. Solida Sinica 2016, 29, 111.
- 78 Z. Ren, J. Xu, X. Le, C. Lee, Micromachines 2021, 12, 946.
- 79 J. An, Z. Zheng, R. Gong, T. B. T. Nguyen, H. Jun, M. Chrostowki, J.-L. Maurice, W. Chen, P. Roca i Cabarrocas, Appl. Surf. Sci. 2020, 518, 146057.
- 80 T. Bearda, I. Gordon, H. S. Radhakrishnan, V. Depauw, K. Van Nieuwenhuysen, M. Xu, L. Tous, M. Filipic, S. K. Jonnak, A. Hajijafarassar, X. Liu, M. Debucquoy, Y. Abdulraheem, J. Szlufcik, J. Poortmans, MRS Adv. 2016, 1, 3235.
- 81 Kawano, M.; Yamada, S.; Tanikawa, K.; Sawano, K.; Miyao, M.; Hamaya, K., Appl. Phys. Lett. 2013, 102 , 121908.
- 82 Y. B. Cheng, C. K. Chia, Y. Chai, D. Z. Chi, Thin Solid Films 2012, 522, 340.
- 83 J. Yang, P. Jurczak, F. Cui, K. Li, M. Tang, L. Billiald, R. Beanland, A. M. Sanchez, H. Liu, J. Cryst. Growth 2019, 514, 109.
- 84 G. R. Booker, B. A. Joyce, Philos. Mag. 1966, 14, 301.
- 85 D. Buca, S. F. Feste, B. Holländer, S. Mantl, R. Loo, M. Caymax, R. Carius, H. Schaefer, Solid-State Electron. 2006, 50, 32.
- 86 Y. Nakamura, T. Miwa, M. Ichikawa, Nanotechnology 2011, 22, 265301.
- 87 Y. Nakamura, A. Murayama, M. Ichikawa, Cryst. Growth Des. 2011, 11, 3301.
- 88 Y. Yasuda, Jpn. J. Appl. Phys. 1971, 10, 45.
- 89 Y. Du, B. Xu, G. Wang, S. Gu, B. Li, Z. Kong, J. Yu, G. Bai, J. Li, W. Wang, H. H. Radamson, J. Mater. Sci. Mater. Electron. 2021, 32, 6425.
- 90 M. Opel, J. Phys. D: Appl. Phys. 2011, 45, 033001.
- 91 K. Oura, V. G. Lifshits, A. Saranin, A. V. Zotov, M. Katayama, in Advanced Texts in Physics, Springer, Berlin 2003.
- 92 R. K. W.D. Crippa, D. L. Rode, E. Weber, M. Masi, in Silicon Epitaxy, Academic Press, Cambridge, MA 2001.
- 93 K. Madiomanana, M. Bahri, J. B. Rodriguez, L. Largeau, L. Cerutti, O. Mauguin, A. Castellano, G. Patriarche, E. Tournié, J. Cryst. Growth 2015, 413, 17.
- 94 A. Ishizaka, Y. Shiraki, J. Electrochem. Soc. 1986, 133, 666.
- 95 M. Moreno, G. Patriarche, J. Mater. Res. 2013, 28, 1626.
- 96 R. Cariou, W. Chen, J. L. Maurice, J. Yu, G. Patriarche, O. Mauguin, L. Largeau, J. Decobert, Sci. Rep. 2016, 6, 25674.
- 97 T. Ohmi, T. Ichikawa, T. Shibata, K. Matsudo, H. Iwabuchi, Appl. Phys. Lett. 1988, 53, 45.
- 98 H. W. Kim, J. Mater. Sci. 2004, 39, 361.
- 99 H. Kim, in Wafer Surface Cleaning for Silicon Homoepitaxy with and Without ECR Hydrogen Plasma Exposure, Massachusetts Institute of Technology, Cambridge, MA 1994.
- 100 J. Jung, B. Son, B. Kam, Y. S. Joh, W. Jeong, S. Cho, W. J. Lee, S. Park, Materials 2021, 14, 3733.
- 101 R. L. Wallace, J. I. Hanoka, A. Rohatgi, G. Crotty, Sol. Energy Mater. Sol. Cells 1997, 48, 179.
- 102 E. M. Sachs, D. Ely, J. Serdy, J. Cryst. Growth 1987, 82, 117.
- 103 R. Janoch, R. Wallace, J. I. Hanoka, in Conf. Record of the Twenty Sixth IEEE Photovoltaic Specialists Conf., IEEE, Piscataway, NJ 1997, pp. 95–98.
- 104 T. F. Ciszek, J. L. Hurd, M. Schietzelt, J. Electrochem. Soc. 1982, 129, 2838.
- 105 J. Kühnle, R. B. Bergmann, J. Krinke, J. H. Werner, MRS Proc. 1996, 426, 111.
- 106 A. Ur Rehman, S. Lee, S. Lee, Electron. Mater. Lett. 2015, 11, 295.
- 107 K. J. Weber, A. W. Blakers, K. R. Catchpole, Appl. Phys. A 1999, 69, 195.
- 108 S. M. Gates, C. M. Greenlief, S. K. Kulkarni, H. H. Sawin, J. Vac. Sci. Technol., A 1990, 8, 2965.
- 109 J. An, J.-L. Maurice, V. Depauw, P. Roca i Cabarrocas, W. Chen, Appl. Surf. Sci. 2021, 546, 149056.
- 110 Nagamine, K.; Yamada, A.; Konagai, M.; Takahashi, K., Jpn. J. Appl. Phys. 1987, 26, L951.
- 111 C. C. Tsai, G. B. Anderson, R. Thompson, J. Non-Cryst. Solids 1991, 137–138, 673.
- 112 D. J. Eaglesham, H. Gossmann, M. Cerullo, Phys. Rev. Lett. 1990, 65, 1227.
- 113
S. I. Stenin, B. Z. Kanter, A. I. Nikiforov, in Growth of Crystals (Eds: E. I. Givargizov, S. A. Grinberg, D. W. Wester), Springer US, Boston, MA 1992, pp. 69–76.
10.1007/978-1-4615-3268-2_6 Google Scholar
- 114
Y. Ota, Thin Solid Films 1983, 106, 1.
10.1016/0040-6090(83)90180-3 Google Scholar
- 115 H.-J. Gossmann, J. Miner. Metal Mater. Soc. 1991, 43, 28.
- 116 C. W. Teplin, K. Alberi, M. Shub, C. Beall, I. T. Martin, M. J. Romero, D. L. Young, R. C. Reedy, P. Stradins, H. M. Branz, Appl. Phys. Lett. 2010, 96, 201901.
- 117 S. Lee, K. Ahn, B. T. Ahn, J. Electrochem. Soc. 2007, 154, H778.
- 118 B. Meyerson, E. Ganin, D. Smith, T. Nguyen, J. Electrochem. Soc. 1986, 133, 1232.
- 119 B. S. Meyerson, Appl. Phys. Lett. 1986, 48, 797.
- 120
W. Zhang, N. Lloyd, K. Osman, J. Bonar, J. Hamel, D. Bagnall, Microelectron. Eng. 2004, 73, 514.
10.1016/S0167-9317(04)00203-5 Google Scholar
- 121
L. Bailey, G. Proudfoot, B. Mackenzie, N. Andersen, A. Karlsson, A. Ulyashin, Phys. Status Solidi A 2014, 212, 42.
10.1002/pssa.201431768 Google Scholar
- 122 P. Plantin, F. Challali, O. Carriot, F. Lainat, M. Ancilotti, G. Gadot, P. Brault, Microelectron. Eng. 2008, 85, 636.
- 123 S. J. DeBoer, V. L. Dalal, G. Chumanov, R. Bartels, Appl. Phys. Lett. 1995, 66, 2528.
- 124 H. Khan, H. Frey, Surf. Coat. Technol. 1999, 116, 472.
- 125 P. C. Zalm, L. J. Beckers, Appl. Phys. Lett. 1982, 41, 167.
- 126 R. A. Zuhr, B. R. Appleton, N. Herbots, B. C. Larson, T. S. Noggle, S. J. Pennycook, J. Vac. Sci. Technol. A 1987, 5, 2135.
- 127 J. W. Rabalais, B. Al, K. J. Boyd, D. Marton, J. Kulik, Z. Zhang, W. K. Chu, in Proc. of 11th Int. Conf. on Ion Implantation Technology, 1996, pp 682–685.
- 128 K. Sasaki, H. Tomoda, T. Takada, Vacuum 1998, 51, 537.
- 129 K. B. Sanjay, Proc.SPIE 1993.
- 130 R. Shimokawa, M. Yamanaka, I. Sakata, Jpn. J. Appl. Phys. 2007, 46, 7612.
- 131 T. Kitagawa, M. Kondo, A. Matsuda, Appl. Surf. Sci. 2000, 159, 30.
- 132 M. Moreno, P. Rocai Cabarrocas, EPJ Photovolt. 2010, 1, 10301.
- 133 Y. Gao, M. Asadirad, Y. Yao, P. Dutta, E. Galstyan, S. Shervin, K.-H. Lee, S. Pouladi, S. Sun, Y. Li, M. Rathi, J.-H. Ryou, V. Selvamanickam, ACS Appl. Mater. Interfaces 2016, 8, 29565.
- 134 J.-H. Ahn, H.-S. Kim, J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, J. A. Rogers, IEEE Electron Dev. Lett 2006, 27, 460.
- 135 P.-Y. Hsieh, C.-Y. Lee, N.-H. Tai, J. Mater. Chem. C 2015, 3, 7513.
- 136 H.S. Radhakrishnan, T. Bearda, M. Filipic, K. Van Nieuwenhuysen, V. Depauw, I. Gordon, M. Debucquoy, J. Szlufcik, J. Poortmans, in 33rd European Photovoltaic Solar Energy Conf. and Exhibition 2017, pp. 740–744.
- 137 A. Hajijafarassar, K. Van Nieuwenhuysen, I. Sharlandzhiev, V. Depauw, H. Sivaramakrishnan Radhakrishnan, T. Bearda, I. Gordon, J. Szlufcik, Y. Abdulraheem, J. Poortmans, L. Magagnin, in 32nd European Photovoltaic Solar Energy Conf. and Exhibition 2016, pp. 313–316.
- 138 J. Govaerts, C. Trompoukis, H.S. Radhakrishnan, L. Tous, S. Granata, E. Carnemolla, R. Martini, A. Marchegiani, M. Karim, I. Sharlandzhiev, T. Bearda, V. Depauw, K. Van Nieuwenhuysen, I. Gordon, J. Szlufcik, J. Poortmans, Energy Proc. 2015, 77, 871.
- 139
R. B. Bergmann, T. J. Rinke, R. M. Hausner, M. Grauvogl, M. Vetter, J. H. Werner, Int. J. Photoenergy 1999, 1, 839258.
10.1155/S1110662X99000173 Google Scholar
- 140 K. V. Nieuwenhuysen, I. Gordon, T. Bearda, C. Boulord, M. Debucquoy, V. Depauw, F. Dross, J. Govaerts, S. Granata, R. Labie, X. Loozen, R. Martini, B. O. Sullivan, H. S. Radhakrishnan, K. Baert, J. Poortmans, in 38th IEEE Photovoltaic Specialists Conf., IEEE, Piscataway, NJ 2012, pp. 1833–1836.
- 141 C. Solanki, R. Bilyalov, J. Poortmans, J. Nijs, R. Mertens, Sol. Energy Mater. Sol. Cells 2004, 83, 101.
- 142 H. S. Radhakrishnan, R. Martini, V. Depauw, K. V. Nieuwenhuysen, M. Debucquoy, J. Govaerts, I. Gordon, R. Mertens, J. Poortmans, IEEE J. Photovolt. 2014, 4, 70.
- 143 R. Brendel, J. H. Petermann, D. Zielke, H. Schulte-Huxel, M. Kessler, S. Gatz, S. Eidelloth, R. Bock, E. G. Rojas, J. Schmidt, T. Dullweber, IEEE J. Photovolt. 2011, 1, 9.
- 144 N. Milenkovic, M. Driesen, B. Steinhauser, J. Benick, S. Lindekugel, M. Hermle, S. Janz, S. Reber, in IEEE 43rd Photovoltaic Specialists Conf. (PVSC), IEEE, Piscataway, NJ 2016, pp. 0058–0061.
- 145 R. B. Bergmann, Appl. Phys. A: Mater. Sci. Process. 1999, 69, 187.
- 146 C. Sanchez-Perez, M. Hernandez-Castro, I. Garcia, Appl. Surf. Sci. 2022, 577, 151907.
- 147 I. Sharlandzhiev, Manifold Reuse of Silicon Substrate in the Layer Transfer Process with Porous Silicon, Instituto Superior Tecnico, Lisboa, Portungal 2015.
- 148 N. Milenkovic, M. Driesen, E. Gust, S. Janz, S. Reber, Energy Proc. 2014, 55, 552.
- 149 S. Zhang, Z. Lu, J. Sheng, P. Gao, X. Yang, S. Wu, J. Ye, M. Kambara, Appl. Phys. Express 2016, 9, 055506.
- 150 C. C. Chiang, B. T. H. Lee, Sci. Rep. 2019, 9, 12631.
- 151 E. Kobayashi, Y. Watabe, R. Hao, T. S. Ravi, Progr. Photovolt. Res. Appl. 2016, 24, 1295.
- 152 L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, A. Barnett, IEEE J. Photovolt. 2014, 4, 1397.
- 153 C. H. Lee, D. R. Kim, X. Zheng, ACS Nano 2014, 8, 8746.
- 154 Q. Lin, H. Huang, Y. Jing, H. Fu, P. Chang, D. Li, Y. Yao, Z. Fan, J. Mater. Chem. C 2014, 2, 1233.
- 155 L. Shao, Y. Lin, J. K. Lee, Q. X. Jia, Y. Wang, M. Nastasi, P. E. Thompson, N. D. Theodore, P. K. Chu, T. L. Alford, J. W. Mayer, P. Chen, S. S. Lau, Appl. Phys. Lett. 2005, 87, 091902.
- 156 J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, R. Brendel, Progr. Photovolt. Res. Appl. 2012, 20, 1.
- 157 J. Grisolia, G. Benassayag, A. Claverie, B. Aspar, C. Lagahe, L. Larbi, Appl. Phys. Lett. 2000, 76, 852.
- 158 J. Serra, P. Bellanger, P. O. Bouchard, M. Bernacki, Phys. Status Solidi C 2014, 11, 1644.
- 159 S. Banerjee, in Laser-Enhanced CVD for Low-Temperature Si Epitaxy, Vol. 1804, SPIE, Bellingham, WA 1993.