Investigation of Topological and Catalytic Properties of Gold Iodide Monolayer: A Density Functional Theory Study
Raghottam M. Sattigeri
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002 India
Search for more papers by this authorBhautik R. Dhori
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002 India
Search for more papers by this authorNarayan N. Som
Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Prafulla K. Jha
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002 India
Search for more papers by this authorDominik Kurzydłowski
Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, ul. Wóycickiego 1/3, Warsaw, 01-938 Poland
Search for more papers by this authorRaghottam M. Sattigeri
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002 India
Search for more papers by this authorBhautik R. Dhori
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002 India
Search for more papers by this authorNarayan N. Som
Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Prafulla K. Jha
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002 India
Search for more papers by this authorDominik Kurzydłowski
Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, ul. Wóycickiego 1/3, Warsaw, 01-938 Poland
Search for more papers by this authorAbstract
Insulating bulk and conducting edge states makes 2D topological insulators (TI) a candidate quantum material with varied applications. 2D binary monolayers composed of group-11 transition metals and halides with puckered structures have been recently explored for their photocatalytic and quantum cutting properties. However, such binary systems have not yet been explored for their topological properties. Herein, the topological and catalytic properties of one such binary compound, gold iodide (AuI) which belongs to P6 3/mmc [194] space group governed by a honeycomb lattice structure is explored. The nontrivial TI nature exists in a narrow window of strain from −2% to 4%. Within this region, by employing strain engineering technique the bandgap can be tuned to as high as 0.113 eV. The nontrivial character is further investigated by calculating the invariant, robust edge state spectra and slab band structures. The Gibbs free energy towards hydrogen evolution reaction is computed to assess the catalytic property of AuI. The Gibbs free energy was found to be −0.40 eV with Volmer–Heyrovsky as the preferred reaction mechanism. With this study, it is proposed AuI monolayer as a candidate material for prospective applications in the field of nanoelectronics and catalysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request
References
- 1 C. L. Kane, E. J. Mele, J. Mele. Phys. Rev. Lett. 2005, 95, 146802.
- 2 C. L. Kane, E. J. Mele, J. Mele. Phys. Rev. Lett. 2005, 95, 226801.
- 3 S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 2010, 82, 245412.
- 4 F. Y. Yugui Yao, X.-L. Qi, S.-C. Zhang, Z. Fang, Phys. Rev. B 2007, 75, 041401.
- 5 R.-W. Zhang, C.-W. Zhang, W.-X. Ji, S.-S. Yan, Y.-G. Yao, Nanoscale 2017, 9, 8207.
- 6 J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S.-C. Zhang, B. Wang, J. G. Hou, Nat. Mater. 2018, 17, 1081.
- 7 C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 2011, 107, 076802.
- 8 Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Phys. Rev. Lett. 2013, 111, 136804.
- 9 Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, A. Zunger, Nano Lett. 2015, 15, 1222.
- 10 G. Yang, Z. Xu, Z. Liu, S. Jin, H. Zhang, Z. Ding, J. Phys. Chem. C, 2017, 121, 12945.
- 11 Y.-P. Wang, C.-W. Zhang, W.-X. Ji, R.-W. Zhang, P. Li, P.-J. Wang, M.-J. Ren, X.-L. Chen, M. Yuan, J. Phys. D: Appl. Phys. 2016, 49, 055305.
- 12 V. Cappello, L. Marchetti, P. Parlanti, S. Landi, I. Tonazzini, M. Cecchini, V. Piazza, M. Gemmi, Sci. Rep. 2016, 6, 1.
- 13 D. Marco, S. Páez, G. Boaglio, Sci. Rep. 2015, 5, 1.
- 14 Z. Song, C.-C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, Q. Niu, J. Lu, Y. Yao, NPG Asia Mater. 2014, 6, 147.
- 15 L. Xian, A. Pérez Paz, E. Bianco, P. M. Ajayan, A. Rubio, 2D Mater. 2017, 4, 041003.
- 16 X. Qian, J. Liu, L. Fu, J. Li, Science 2014, 346, 1344.
- 17 L. Zhou, L. Kou, Y. Sun, C. Felser, F. Hu, G. Shan, S. C. Smith, B. Yan, T. Frauenheim, Nano Lett. 2015, 15, 7867.
- 18 A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, D. Akinwande, Nat. Mater. 2017, 16, 163.
- 19 S.-S. Li, W.-X. Ji, S.-J. Hu, C.-W. Zhang, S.-S. Yan, ACS Appl. Mater. Interfaces, 2017, 9, 41443.
- 20 Y.-P. Wang, W.-X. Ji, C.-W. Zhang, P. Li, S.-F. Zhang, P.-J. Wang, S.-S. Li, S.-S. Yan, Appl. Phys. Lett. 2017, 110, 213101.
- 21 M.-H. Zhang, S.-F. Zhang, P.-J. Wang, C.-W. Zhang, Nanoscale 2020, 12, 3950.
- 22 S.-J. Zhang, C.-W. Zhang, S.-F. Zhang, W.-X. Ji, P. Li, P.-J. Wang, S.-S. Li, S.-S. Yan, Phys. Rev. B 2017, 96, 205433.
- 23 H. Sawahata, N. Yamaguchi, H. Kotaka, F. Ishii, Jpn. J. Appl. Phys. 2018, 57, 030309.
- 24 L. Winterfeld L. A. Agapito, J. Li, N. Kioussis, P. Blaha, Y. P. Chen, Phys. Rev. B 2013, 87, 075143.
- 25 T. Teshome, A. Datta, J. Phys. Chem. C 2018, 122, 15047.
- 26 C.-Z. Chang, P. Tang, X. Feng, K. Li, X.-C. Ma, W. Duan, K. He, Q.-K. Xue, Phys. Rev. Lett. 2015, 115, 136801.
- 27 S. Rajput, Y.-Y. Li, M. Weinert, L. Li, ACS Nano 2016, 10, 8450.
- 28 X. Huang, L. Yan, Y. Zhou, Y. Wang, H.-Z. Song, L. Zhou, J. Phys. Chem. Lett. 2021, 12, 525.
- 29 P. Kapoor, A. Kumar, M. Sharma, J. Kumar, A. Kumar, P. K. Ahluwalia, Mater. Sci. Eng. B 2018, 228, 84.
- 30 S. Rodríguez-Barrero, J. Fernández-Larrinoa, I. Azkona, L. N. López De Lacalle, R. Polvorosa, Mater. Manuf. Processes 2016, 31, 593.
- 31 A. F. Marshall, I. A. Goldthorpe, H. Adhikari, M. Koto, Y.-C. Wang, L. Fu, E. Olsson, P. C. Mcintyre, Nano Lett. 2010, 10, 3302.
- 32 X. Huang, S. Li, S. Wu, Y. Huang, F. Boey, C. L. Gan, H. Zhang, Adv. Mater. 2012, 24, 979.
- 33 C. M. Payne, D. E. Tsentalovich, D. N. Benoit, L. J. E. Anderson, W. Guo V. L. Colvin, M. Pasquali, J. H. Hafner, Chem. Mater. 2014, 26, 1999.
- 34 Z. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu, K. P. Ong, Y. A. Akimov, L. Wu, B. Li, J. Wu, B. Li, J. Wu, Y. Huang, Q. Liu, C. E. Png, C. L. Gan, P. Yang, H. Zhang, Nat. Commun. 2015, 6, 1.
- 35 Y. Oshima, A. Onga, K. Takayanagi, Phys. Rev. Lett. 2003, 91, 205503.
- 36 R. Burch, Phys. Chem. Chem. Phys. 2006, 8, 5483.
- 37 T. Kawawaki, Y. Negishi, Nanomaterials 2020, 10, 238.
- 38 T. Tabakova, Front. Chem. 2019, 7, 517.
- 39 J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
- 40 P. Quaino, F. Juarez, E. Santos, W. Schmickler, Beilstein J. Nanotechnol. 2014, 5, 846.
- 41 F. Li, M. Xue, Two-Dimensional Materials-Synthesis, Characterization and Potential Applications. Rijeka: IntechOpen. 2016, p. 63.
- 42 N. N. Som, P. K. Jha, Int. J. Hydrogen Energy 2020, 45, 23920.
- 43 S. Wang, A. Lu, C.-J. Zhong, Nano Convergence 2021, 8, 1.
- 44 S. Li, E. Li, X. An, X. Hao, Z. Jiang, G. Guan, Nanoscale 2021, 13, 12788.
- 45 J. Peng, W. Dong, Z. Wang, Y. Meng, W. Liu, P. Song, Z. Liu, Mater. Today Adv. 2020, 8, 100081.
- 46 C. Ling, Y. Ouyang, L. Shi, S. Yuan, Q. Chen, J. Wang, ACS Catal. 2017, 7, 5097.
- 47 C. Tsai, F. Abild-Pedersen, J. K. Nørskov, Nano Lett. 2014, 14, 1381.
- 48 T. R. Hellstern, J. Kibsgaard, C. Tsai, D. W. Palm, L. A. King, F. Abild-Pedersen, T. F. Jaramillo, ACS Catal. 2017, 7, 7126.
- 49 T. D. Tran, M. T. T. Nguyen, H. V. Le, D. N. Nguyen, Q. D. Truong, P. D. Tran, Chem. Commun. 2018, 54, 3363.
- 50 R. Burch, Phys. Chem. Chem. Phys. 2006, 8, 5483.
- 51 H. Lv, Z. Xi, Z. Chen, S. Guo, Y. Yu, W. Zhu, Q. Li, X. Zhang, M. Pan, G. Lu, S. Mu, S. Sun, J. Am. Chem. Soc. 2015, 137, 5859.
- 52 W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2013, 135, 16833.
- 53 R. M. Sattigeri, T. K. Gajaria, P. K. Jha, P. Spiewak, K. J. Kurzydłowski, J. Phys. Condens. Matter 2021, 33, 155402.
- 54 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys. Condens. Matter 2009, 21, 395502.
- 55 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 56 P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 57 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 58 S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 2001, 73, 515.
- 59 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 60 A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 2014, 185, 2309.
- 61 Q. Wu, S. Zhang, H.-F. Song, M. Troyer, A. A. Soluyanov, Comput. Phys. Commun. 2018, 224, 405.
- 62 H. Weng, A. Ranjbar, Y. Liang, Z. Song, M. Khazaei, S. Yunoki, M. Arai, Y. Kawazoe, Z. Fang, X. Dai, Phys. Rev. B 2015, 92, 075436.
- 63 D.-H. Choe, H.-J. Sung, K. J. Chang, Phys. Rev. B 2016, 93, 125109.
- 64 R. Li, H. Wang, N. Mao, H. Ma, B. Huang, Y. Dai, C. Niu, Appl. Phys. Lett. 2021, 119, 173105.
- 65 G. Li, C. Felser, Appl. Phys. Lett. 2020, 116, 070501.
- 66 R. Xie, T. Zhang, H. Weng, G.-L. Chai, Small Sci. Wiley-VCH GmbH, 2100106.
- 67
X. Zhu, Y. Wang, Y. Jing, T. Heine, Y. Li, Mater. Today Adv. 2020, 8, 100091.
10.1016/j.mtadv.2020.100091 Google Scholar
- 68 L. Wang, X. Zhang, W. Meng, Y. Liu, X. Dai, G. Liu, J. Mater. Chem. A 2021, 9, 22453.
- 69 Q. Chang, X. Zhang, Z. Yang, Appl. Surf. Sci. 2021, 565, 150568.
- 70 Z. Meng, B. Zhang, Q. Peng, Y. Yu, J. Zhou, Z. Sun, Appl. Surf. Sci. 2021, 562, 150151.