Hot-spot analysis to dissect the functional protein–protein interface of a tRNA-modifying enzyme
Stephan Jakobi
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorTran Xuan Phong Nguyen
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorFrançois Debaene
Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS UMR7178; 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorAlexander Metz
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorSarah Sanglier-Cianférani
Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS UMR7178; 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorKlaus Reuter
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorCorresponding Author
Gerhard Klebe
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Correspondence to: Gerhard Klebe, Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany. E-mail: [email protected]Search for more papers by this authorStephan Jakobi
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorTran Xuan Phong Nguyen
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorFrançois Debaene
Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS UMR7178; 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorAlexander Metz
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorSarah Sanglier-Cianférani
Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS UMR7178; 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorKlaus Reuter
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Search for more papers by this authorCorresponding Author
Gerhard Klebe
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
Correspondence to: Gerhard Klebe, Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany. E-mail: [email protected]Search for more papers by this authorABSTRACT
Interference with protein–protein interactions of interfaces larger than 1500 Å2 by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. Proteins 2014; 82:2713–2732. © 2014 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
prot24637-sup-0001-suppinfo01.docx6.5 MB |
Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Zinzalla G, Thurston DE. Targeting protein-protein interactions for therapeutic intervention: a challenge for the future. Future Med Chem 2009; 1: 65–93.
- 2 Fischer PM. Protein-protein interactions in drug discovery. Drug Des Rev 2005; 2: 179–207.
- 3 Xenarios I, Eisenberg D. Protein interaction databases. Curr Opin Biotechnol 2001; 12: 334–339.
- 4 Archakov AI, Govorun VM, Dubanov AV, Ivanov YD, Veselovsky AV, Lewi P, Janssen P. Protein-protein interactions as a target for drugs in proteomics. Proteomics 2003; 3: 380–391.
- 5 Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach E, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes HW, Ruepp A, Frishman D. The MIPS mammalian protein-protein interaction database. Bioinformatics 2005; 21: 832–834.
- 6 Beuming T, Skrabanek L, Niv MY, Mukherjee P, Weinstein H. PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics 2005; 21: 827–828.
- 7 Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647–656.
- 8 Villunger A, Scott C, Bouillet P, Strasser A. Essential role for the BH3-only protein Bim but redundant roles for Bax, Bcl-2, and Bclw in the control of granulocyte survival. Blood 2003; 101: 2393–2400.
- 9 Blazer LL, Neubig RR. Small molecule protein-protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacol 2009; 34: 126–141.
- 10 Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 2007; 450: 1001–1009.
- 11 Cochran AG. Protein-protein interfaces: mimics and inhibitors. Curr Opin Chem Biol 2001; 5: 654–659.
- 12 Toogood PL. Inhibition of protein-protein association by small molecules: approaches and progress. J Med Chem 2002; 45: 1543–1558.
- 13 Berg T. Modulation of protein-protein interactions with small organic molecules. Angew Chem Int Ed 2003; 42: 2462–2481.
- 14 Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: processing towards the dream. Nat Rev Drug Discov 2004; 3: 301–317.
- 15 Yin H, Hamilton AD. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed 2005; 44: 4130–4163.
- 16 Che Y, Brooks BR, Marschall GR. Development of small molecules designed to modulate protein-protein interactions. J Comput Aided Mol Design 2006; 20: 109–130.
- 17 Fletcher S, Hamilton AD. Targeting protein-protein interactions by rational design: mimicry of protein surfaces. J R Soc Interface 2006; 3: 215–233.
- 18 Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein-protein interaction inhibition. Curr Opin Chem Biol 2011; 15: 475–481.
- 19 Metz A, Ciglia E, Gohlke H. Modulating protein-protein interactions: from structural determinants of binding to druggability prediction to application. Curr Pharm Design 2012; 18: 4630–4647.
- 20 Stengl B, Meyer EA, Heine A, Brenk R, Diederich F, Klebe G. Crystal structures of tRNA-guanine transglycosylase (TGT) in complex with novel and potent inhibitors unravel pronounced induced-fit adaptations and suggest dimer formation upon substrate binding. J Mol Biol 2007; 370: 492–511.
- 21 Ritschel T, Atmanene C, Reuter K, Van Dorsselaer A, Sanglier-Cianferani S, Klebe G. An integrative approach combining noncovalent mass spectrometry, enzyme kinetics and X-ray crystallography to decipher Tgt protein-protein and protein-RNA interaction. J Mol Biol 2009; 393: 833–847.
- 22 Stengl B, Reuter K, Klebe G. Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA modifying enzymes from the three different kingdoms of life seem to share a common mechanism. ChemBioChem 2005; 6: 1–15.
- 23 Hoertner SR, Ritschel T, Stengl B, Kramer C, Schweizer WB, Wagner B, Kansy M, Klebe G, Diederich F. Potent inhibitors of tRNA-guanine transglycosylase, an enzyme linked to the pathogenicity of the Shigella bacterium: charge-assisted hydrogen bonding. Angew Chem Int Ed 2007; 46: 8266–8269.
- 24 Xie W, Liu X, Huang RH. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat Struct Biol 2003; 10: 781–788.
- 25 Romier C, Meyer JE, Suck D. Slight sequence variations of a common fold explain the substrate specificities of tRNA-guanine transglycosylases from the three kingdoms. FEBS Lett 1997; 416: 93–98.
- 26 Biela I, Tidten-Luksch N, Immekus F, Glinca S, Nguyen TXP, Gerber H-D, Heine A, Klebe G, Reuter K. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor. PLoS One 2013; 8: e64240.
- 27 Boland C, Hayes P, Santa-Maria I, Nishimura S, Kelly VP. Queuosine formation in eucaryotic tRNA occurs via a mitochondria-localized heteromeric transglycosylase. J Biol Chem 2009; 284: 18218–18227.
- 28 Chen V-C, Kelly VP, Stachura SV, Garcia GA. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. RNA 2010; 16: 958–968.
- 29 Krissinel E, Henrick K. Interference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372: 774–797.
- 30 Cukuroglu E, Gursoy A, Keskin O. HotRegion: a database of predicted hot spot clusters. Nucleic Acids Res 2012; 40: D829–D833.
- 31 Zhu XL, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 2011; 79: 2671–2683.
- 32 Krüger DM, Gohlke H. DrugScorePPI webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Res. 2010; 38: W480–W486.
- 33 Kortemme T, Kim DE, Baker D. Computational alanine scanning of protein-protein interfaces. Sci Signaling 2004; 219: pl2.
- 34 Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002; 320: 369–387.
- 35 Romier C, Reuter K, Suck D, Ficner R. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J 1996; 15: 2850–2857.
- 36 Case DA, Cheatham T, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods R. The Amber biomolecular simulation programs. J Comput Chem 2005; 26: 1668–1688.
- 37 Pang YP. Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins 2001; 45: 183–189.
- 38 Jorgensen W, Chandrasekhar J, Madura J, Klein M. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926–935.
- 39 Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbones parameters. Proteins 2006; 65: 712–725.
- 40 Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092.
- 41 Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327–341.
- 42 Izaguirre J, Catarello D, Wozniak J, Skeel R. Langevin stabilisation of molecular dynamics. J Chem Phys 2001; 114: 2090–2098.
- 43 Gohlke H, Kiel C, Case DA. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 2003; 330: 891–913.
- 44 Onufriev A, Case DA, Bashford D. Effective Born radii in the generalized Born approximation: the importance of being perfect. J Comput Chem 2002; 23: 1297–1304.
- 45
Romier C,
Ficner R,
Reuter K,
Suck D. Purification, crystallization, and preliminary X-ray diffraction studies of tRNA-guanine transglycosylase from Zymomonas mobilis. Proteins 1996; 24: 516–519.
10.1002/(SICI)1097-0134(199604)24:4<516::AID-PROT11>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 46
Sambrook J,
Fritsch EF,
Maniatis T. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
10.1111/j.1095-8312.1996.tb01434.x Google Scholar
- 47 Curnow A, Kung FL, Koch KA, Garcia GA. tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. Biochemistry1993: 32: 5239–5246.
- 48 Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997; 276: 307–326.
- 49 McCoy A, Grosse-Kunstleve R, Adams P, Winn M, Storoni L, Read R. Phaser crystallographic software. J Appl Crystallogr 2007; 40: 658–674.
- 50 Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans P, Keegan R, Krissinel E, Leslie A, McCoy S, McNicholas S, Mershudov G, Pannu N, Potterton E, Powell H, Read R, Vagin A, Wilson K. Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D 2011; 67: 235–242.
- 51 Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echoo Is N, Headd J, Hung L-W, Kapral G, Grosse-Kunstleve R, McCoy A, Moriarty N, Oeffner R, Read R, Richardson D, Richardson J, Terwilliger T, Zwart P. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D 2010; 66: 213–221.
- 52 Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 2004; 60: 2126–2132.
- 53 Liang S, Li L, Hsu W-L, Pilcher MN, Uversky V, Zhou Y, Dunker AK, Meroueh SO. Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations. Biochemistry 2009; 48: 399–414.
- 54 Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci USA 1996; 93: 13–20.
- 55 Conte LL, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol 1999; 285: 2177–2198.
- 56 Janin J, Chothia C. The structure of protein-protein recognition sites. J Biol Chem 1990; 265: 16027–16030.
- 57
Glaser F,
Steinberg DM,
Vakser IA,
Ben-Tal N. Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 2001; 43: 89–102.
10.1002/1097-0134(20010501)43:2<89::AID-PROT1021>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 58 Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis—an improved methodological approach. J Comput Chem 2007; 28: 644–654.
- 59 Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998; 280: 1–9.
- 60 Bradshaw RT, Patel BH, Tate EW, Leatherbarrow RJ, Gould IR. Comparing experimental and computational alanine scanning techniques for probing a prototypical protein-protein interaction. Protein Eng Des Sel 2011; 24: 197–207.
- 61 Tuncbag N, Kar G, Keskin O, Gursoy A, Nussinov R. A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Brief Bioinform 2009; 10: 217–232.
- 62 Clackson T, Wells JA. A hot-spot of binding-energy in a hormone-receptor interface. Science 1995; 267: 383–386.
- 63 Srinivasan J, Cheatham TE, III, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 1998; 120: 9401–9409.
- 64 Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999; 121: 8133–8143.
- 65 Archontis G, Simonson T, Karplus M. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. J Mol Biol 2001; 306: 307–327.
- 66 Gao J, Kuczera K, Tidor B, Karplus M. Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 1989; 244: 1069–1072.
- 67 Hendsch ZS, Tidor B. Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding. Protein Sci 1999; 8: 1381–1392.
- 68 Gohlke H, Case DA. Converging free energy estimates: MMPB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 2004; 25: 238–250.
- 69 Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol Inform 2012; 31: 114–122.
- 70 Padlan EA. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins 1990; 7: 112–124.
- 71 Burley S, Petsko G. Aromatic-aromatic interaction: a mechanism of protein structure stabilisation. Science 1985; 229: 23–28.
- 72 McGaughey, Gagné M, Rappeé A. π-stacking interactions. Alive and well in proteins. J Biol Chem 1998; 273: 15458–15463.
- 73 Espinoza-Fonseca L. Aromatic residues link binding and function of intrinsically disordered proteins. Mol Biosyst 2012; 8: 237–246.
- 74 Bhattacharyya R, Samanta U, Chakrabarti P. Aromatic-aromatic interactions in and around α-helices. Protein Eng 2002; 15: 91–100.
- 75 Fleming P, Richards F. Protein packing: dependence on protein size, secondary structure and amino acid composition. J Mol Biol 2000; 299: 487–498.
- 76 Tsuchiya Y, Nakamura H, Kinoshita K. Discrimination between biological interfaces and crystal-packing contacts. Adv Appl Bioinform Chem 2008; 1: 99–113.
- 77
Dasgupta S,
Iyer GH,
Bryant SH,
Lawrence CE,
Bell JA. Extent and nature of contacts between protein molecules in crystal lattices and between subunits of protein oligomers. Proteins 1997; 28: 494–514.
10.1002/(SICI)1097-0134(199708)28:4<494::AID-PROT4>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 78 Ponstingl H, Henrick K, Thornton JM. Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins 2000; 41: 47–57.
- 79 Papoian GA, Ulander J, Wolynes PG. Role of water mediated interactions in protein-protein recognition landscapes. J Am Chem Soc 2003; 125: 9170–9178.
- 80 Rodier F, Bahadur RP, Chakrabarti P, Janin J. Hydration of protein-protein interfaces. Proteins 2005; 60: 36–45.
- 81 Liu Q, Li J. Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective. BMC Bioinf 2010; 11: 244.
- 82 Ahmed MH, Spyrakis F, Cozzini P, Tripathi PK, Mozzarelli A, Scarsdale JN, Safo MA, Kellogg GE. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif. PLoS One 2011; 6: e24712.
- 83 Sundberg EJ, Mariuzza RA. Luxury accomodations: the expanding role of stuctural plasticity in protein-protein interactions. Structure 2000; 8: R137–142.
- 84 DeLano WL, Ultsch MH, de Vos AM, Wells JA. Convergent solutions to binding at a protein-protein interface. Science 2000; 287: 1279–1283.
- 85 Luque I, Freire E. Structural stability of binding sites: consequences for binding affinity and allosteric effects. Proteins 2000; 4: 63–71.
- 86 Teague SJ. Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2003; 2: 527–541.
- 87 Goh C-S, Milburn D, Gerstein M. Conformational changes associated with protein-protein interactions. Curr Opin Struct Biol 2004; 14: 104–109.
- 88 Immekus F, Barandun LJ, Betz M, Debaene F, Petiot S, Sanglier-Cianferani S, Reuter K, Diederich F, Klebe G. Launching spiking ligands into a protein–protein interface: a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme. ACS Chem Biol 2013; 8: 1163–1178.