Structural and functional studies of the potent anti-HIV chemokine variant P2-RANTES
Hongjun Jin
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
Search for more papers by this authorIoannis Kagiampakis
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
Search for more papers by this authorPingwei Li
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
Search for more papers by this authorCorresponding Author
Patricia J. LiWang
University of California Merced, School of Natural Sciences, Merced, California 95343
University of California, Merced 5200 N. Lake Road Merced, CA 95343===Search for more papers by this authorHongjun Jin
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
Search for more papers by this authorIoannis Kagiampakis
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
Search for more papers by this authorPingwei Li
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
Search for more papers by this authorCorresponding Author
Patricia J. LiWang
University of California Merced, School of Natural Sciences, Merced, California 95343
University of California, Merced 5200 N. Lake Road Merced, CA 95343===Search for more papers by this authorAbstract
The N-terminal region of the chemokine RANTES is critical for its function. A synthesized N-terminally modified analog of RANTES, P2-RANTES, was discovered using a phage display selection against living CCR5-expressing cells, and has been reported to inhibit HIV-1 env-mediated cell–cell fusion at subnanomolar levels (Hartley et al. J Virol 2003;77:6637–6644). In the present study we produced this protein using E. coli overexpression and extensively studied its structure and function. The x-ray crystal structure of P2-RANTES was solved and refined at 1.7 Å resolution. This protein was found to be predominantly a monomer in solution by analytical ultracentrifugation, but a tetramer in the crystal. In studies of glycosaminoglycan binding, P2-RANTES was found to be significantly less able to bind heparin than wild type RANTES. We also tested this protein for receptor internalization where it was shown to be functional, in cell–cell fusion assays where recombinant P2-RANTES was a potent fusion inhibitor (IC50 = 2.4 ± 0.8 nM), and in single round infection assays where P2-RANTES inhibited at subnanomolar levels. Further, in a modified fusion assay designed to test specificity of inhibition, P2-RANTES was also highly effective, with a 65-fold improvement over the fusion inhibitor C37, which is closely related to the clinically approved inhibitor T-20. These studies provide detailed structural and functional information for this novel N-terminally modified chemokine mutant. This information will be very useful in the development of more potent anti-HIV agents. PDB Accession Number: 2vxw. Proteins 2010. © 2009 Wiley-Liss, Inc.
REFERENCES
- 1 Allen SJ,Crown SE,Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 2007; 25: 787–820.
- 2 Leonard JT,Roy K. The HIV entry inhibitors revisited. Curr Med Chem 2006; 13: 911–934.
- 3 Sheikine Y,Hansson GK. Chemokines and atherosclerosis. Ann Med 2004; 36: 98–118.
- 4 Fernandez EJ,Lolis E. Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 2002; 42: 469–499.
- 5 Gerard C,Rollins BJ. Chemokines and disease. Nat Immunol 2001; 2: 108–115.
- 6 Wells TN,Proudfoot AE,Power CA. Chemokine receptors and their role in leukocyte activation. Immunol Lett 1999; 65: 35–40.
- 7 Alkhatib G,Combadiere C,Broder CC,Feng Y,Kennedy PE,Murphy PM,Berger EA. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272: 1955–1958.
- 8 Alkhatib G,Locati M,Kennedy PE,Murphy PM,Berger EA. HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 1997; 234: 340–348.
- 9 Amzazi S,Ylisastigui L,Bakri Y,Rabehi L,Gattegno L,Parmentier M,Gluckman JC,Benjouad A. The inhibitory effect of RANTES on the infection of primary macrophages by R5 human immunodeficiency virus type-1 depends on the macrophage activation state. Virology 1998; 252: 96–105.
- 10 Vangelista L,Secchi M,Lusso P. Rational design of novel HIV-1 entry inhibitors by RANTES engineering. Vaccine 2008; 26: 3008–3015.
- 11 Longden J,Cooke EL,Hill SJ. Effect of CCR5 receptor antagonists on endocytosis of the human CCR5 receptor in CHO-K1 cells. Br J Pharmacol 2008; 153: 1513–1527.
- 12 Pakianathan DR,Kuta EG,Artis DR,Skelton NJ,Hebert CA. Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry 1997; 36: 9642–9648.
- 13 Ramnarine EJ,Devico AL,Vigil-Cruz SC. Analogues of N-terminal truncated synthetic peptide fragments derived from RANTES inhibit HIV-1 infectivity. Bioorg Med Chem Lett 2006; 16: 93–95.
- 14 Nardese V,Longhi R,Polo S,Sironi F,Arcelloni C,Paroni R,Desantis C,Sarmientos P,Rizzi M,Bolognesi M,Pavone V,Lusso P. Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES. Nat Str Biol 2001; 8: 611–615.
- 15
Struyf S,De Meester I,Scharpe S,Lenaerts JP,Menten P,Wang JM,Proost P,Van Damme J.
Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor.
Eur J Immunol
1998;
28:
1262–1271.
10.1002/(SICI)1521-4141(199804)28:04<1262::AID-IMMU1262>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 16 Lim JK,Lu W,Hartley O,Devico AL. N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4–68 variant. J Leukocyte Biol 2006; 80: 1395–1404.
- 17 Ylisastigui L,Vizzavona J,Drakopoulou E,Paindavoine P,Calvo CF,Parmentier M,Gluckman JC,Vita C,Benjouad A. Synthetic full-length and truncated RANTES inhibit HIV-1 infection of primary macrophages. AIDS 1998; 12: 977–984.
- 18 Amara A,Gall SL,Schwartz O,Salamero J,Montes M,Loetscher P,Baggiolini M,Virelizier JL,Arenzana-Seisdedos F. HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 1997; 186: 139–146.
- 19 Elsner J,Petering H,Hochstetter R,Kimmig D,Wells TN,Kapp A,Proudfoot AE. The CC chemokine antagonist Met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J Immunol 1997; 27: 2892–2898.
- 20 Elsner J,Petering H,Kimmig D,Wells TN,Proudfoot AE,Kapp A. The CC chemokine receptor antagonist met-RANTES inhibits eosinophil effector functions. Int Arch Allergy Immunol 1999; 118: 462–465.
- 21 Grone HJ,Weber C,Weber KS,Grone EF,Rabelink T,Klier CM,Wells TN,Proudfood AE,Schlondorff D,Nelson PJ. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J 1999; 13: 1371–1383.
- 22
Polo S,Nardese V,De Santis C,Arcelloni C,Paroni R,Sironi F,Verani A,Rizzi M,Bolognesi M,Lusso P.
Enhancement of the HIV-1 inhibitory activity of RANTES by modification of the N-terminal region: dissociation from CCR5 activation.
Eur J Immunol
2000;
30:
3190–3198.
10.1002/1521-4141(200011)30:11<3190::AID-IMMU3190>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 23 Proudfoot AE,Power CA,Hoogewerf AJ,Montjovent MO,Borlat F,Offord RE,Wells TN. Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 1996; 271: 2599–2603.
- 24 Proudfoot AE,Buser R,Borlat F,Alouani S,Soler D,Offord RE,Schroder JM,Power CA,Wells TN. Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J Biol Chem 1999; 274: 32478–32485.
- 25 Mack M,Luckow B,Nelson PJ,Cihak J,Simmons G,Clapham PR,Signoret N,Marsh M,Stangassinger M,Borlat F,Wells TN,Schlondorff D,Proudfoot AE. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 1998; 187: 1215–1224.
- 26
Sabbe R,Picchio GR,Pastore C,Chaloin O,Hartley O,Offord R,Mosier DE.
Donor- and ligand-dependent differences in C-C chemokine receptor 5 reexpression.
J Virol
2001;
75:
661–671.
10.1128/JVI.75.2.661-671.2001 Google Scholar
- 27 Kawamura T,Bruse SE,Abraha A,Sugaya M,Hartley O,Offord RE,Arts EJ,Zimmerman PA,Blauvelt A. PSC-RANTES blocks R5 human immunodeficiency virus infection of Langerhans cells isolated from individuals with a variety of CCR5 diplotypes. J Virol 2004; 78: 7602–7609.
- 28 Hartley O,Gaertner H,Wilken J,Thompson D,Fish R,Ramos A,Pastore C,Dufour B,Cerini F,Melotti A,Heveker N,Picard L,Alizon M,Mosier D,Kent S,Offord R. Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc Natl Acad Sci USA 2004; 101: 16460–16465.
- 29 Pastore C,Picchio GR,Galimi F,Fish R,Hartley O,Offord RE,Mosier DE. Two mechanisms for human immunodeficiency virus type 1 inhibition by N-terminal modifications of RANTES. Antimicrob Agents Chemother 2003; 47: 509–517.
- 30 Hartley O,Dorgham K,Perez-Bercoff D,Cerini F,Heimann A,Gaertner H,Offord RE,Pancino G,Debre P,Gorochov G. Human immunodeficiency virus type 1 entry inhibitors selected on living cells from a library of phage chemokines. J Virol 2003; 77: 6637–6644.
- 31 Gaertner H,Cerini F,Escola JM,Kuenzi G,Melotti A,Offord R,Rossitto-Borlat I,Nedellec R,Salkowitz J,Gorochov G,Mosier D,Hartley O. Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci USA 2008; 105: 17706–17711.
- 32 Skelton NJ,Aspiras F,Ogez J,Schall TJ. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 1995; 34: 5329–5342.
- 33 Chung C,Cooke RM,Proudfoot AEI,Wells TNC. The three-dimensional solution structure of RANTES. Biochemistry 1995; 34: 3907–9314.
- 34 Hoover DM,Shaw J,Gryczynski Z,Proudfoot AEI,Wells T,Lubkowski J. The crystal structure of Met-RANTES: Comparison with native RANTES and AOP-RANTES. Protein Pept Lett 2000; 7: 73–82.
- 35 Hamburger AE,Kim S,Welch BD,Kay MS. Steric accessibility of the HIV-1 gp41 N-trimer region. J Biol Chem 2005; 280: 12567–12572.
- 36 Root MJ,Kay MS,Kim PS. Protein design of an HIV-1 entry inhibitor. Science 2001; 291: 884–888.
- 37 Pleskoff O,Treboute C,Brelot A,Heveker N,Seman M,Alizon M. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 1997; 276: 1874–1878.
- 38 Mkrtchyan SR,Markosyan RM,Eadon MT,Moore JP,Melikyan GB,Cohen FS. Ternary complex formation of human immunodeficiency virus type 1 Env, CD4, and chemokine receptor captured as an intermediate of membrane fusion. J Virol 2005; 79: 11161–11169.
- 39 Wei X,Decker JM,Liu H,Zhang Z,Arani RB,Kilby JM,Saag MS,Wu X,Shaw GM,Kappes JC. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46: 1896–1905.
- 40 McCornack MA,Boren DM,LiWang PJ. Glycosaminoglycan disaccharide alters the dimer dissociation constant of the chemokine MIP-1 beta. Biochemistry 2004; 43: 10090–10101.
- 41 Pace CN,Vajdos F,Fee L,Grimsley G,Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci 1995; 4: 2411–2423.
- 42 Potterton L,Mcnicholas S,Krissinel E,Gruber J,Cowtan K,Emsley P,Murshudov GN,Cohen S,Perrakis A,Noble M. Developments in the CCP4 molecular-graphics project. Acta Crystallogr D-Biol Crystallogr 2004; 60: 2288–2294.
- 43 Brunger AT,Adams PD,Clore GM,Delano WL,Gros P,Grosse-Kunstleve RW,Jiang JS,Kuszewski J,Nilges M,Pannu NS,Read RJ,Rice LM,Simonson T,Warren GL. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D-Biol Crystallogr 1998; 54: 905–921.
- 44 Demeler B,Saber H,Hansen JC. Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys J 1997; 72: 397–407.
- 45 Van Holde KE. WOW. Boundary analysis of sedimentation-velocity experiments with monodisperse and paucidisperse solutes. Biopolymers 1978; 17: 1387–1403.
- 46 Wishart DS,Bigam CG,Yao J,Abildgaard F,Dyson HJ,Oldfield E,Markley JL,Sykes BD. 1H, 13C, 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 1995; 6: 135–140.
- 47 Delaglio F,Grzesiek S,Vuister GW,Hu G,Pfeifer J,Bax A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277–293.
- 48 Garrett DS,Powers R,Gronenborn AM,Clore GM. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J Magn Reson 1991; 95: 214–220.
- 49 Delean A,Munson PJ,Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. [see comment]. Am J Physiol 1978; 235: E97–102.
- 50 Cheng-Mayer C,Liu R,Landau NR,Stamatatos L. Macrophage tropism of human immunodeficiency virus type 1 and utilization of the CC-CKR5 coreceptor. J Virol 1997; 71: 1657–1661.
- 51 Jin H,Shen X,Baggett BR,Kong X,LiWang PJ. The human CC chemokine MIP-1beta dimer is not competent to bind to the CCR5 receptor. J Biol Chem 2007; 282: 27976–27983.
- 52 Liu S,Lu H,Niu J,Xu Y,Wu S,Jiang S. Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem 2005; 280: 11259–11273.
- 53 Veiga AS,Santos NC,Loura LM,Fedorov A,Castanho MA. HIV fusion inhibitor peptide T-1249 is able to insert or adsorb to lipidic bilayers. Putative correlation with improved efficiency. J Am Chem Soc 2004; 126: 14758–14763.
- 54 Root MJ,Steger HK. HIV-1 gp41 as a target for viral entry inhibition. Curr Pharm Des 2004; 10: 1805–1825.
- 55 Barretina J,Blanco J,Armand-Ugon M,Gutierrez A,Clotet B,Este JA. Anti-HIV-1 activity of enfuvirtide (T-20) by inhibition of bystander cell death. Antiviral Therapy 2003; 8: 155–161.
- 56 Le Y,Zhou Y,Iribarren P,Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 2004; 1: 95–104.
- 57 Laing KJ,Secombes CJ. Chemokines. Dev Comp Immunol 2004; 28: 443–460.
- 58 Lau EK,Allen S,Hsu AR,Handel TM. Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv Protein Chem 2004; 68: 351–391.
- 59 Proudfoot AEI,Fritchley S,Borlat F,Shaw JP,Vilbois F,Zwahlen C,Trkola A,Marchant D,Clapham PR,Wells TNC. THe BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem 2001; 276: 10620–10626.
- 60 Shaw JP,Johnson Z,Borlat F,Zwahlen C,Kungl A,Roulin K,Harrenga A,Wells TN,Proudfoot AE. The X-ray structure of RANTES: heparin-derived disaccharides allows the rational design of chemokine inhibitors. Structure 2004; 12: 2081–2093.
- 61 Mccornack MA,Cassidy CK,Liwang PJ. The binding surface and affinity of monomeric and dimeric chemokine MIP-1β for various glycosaminoglycan disaccharides. J Biol Chem 2003; 278: 1946–1956.
- 62 Proudfoot AE,Handel TM,Johnson Z,Lau EK,LiWang P,Clark-Lewis I,Borlat F,Wells TN,Kosco-Vilbois MH. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 2003; 100: 1885–1890.
- 63 Martin L,Blanpain C,Garnier P,Wittamer V,Parmentier M,Vita C. Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry 2001; 40: 6303–6318.
- 64 Laurence JS,LiWang AC,LiWang PJ. Effect of N-terminal truncation and solution conditions on chemokine dimer stability: nuclear magnetic resonance structural analysis of macrophage inflammatory protein 1β Mutants. Biochemistry 1998; 37: 9346–9354.
- 65 Kuloglu ES,Mccaslin DR,Markley JL,Volkman BF. Structural rearrangement of human lymphotactin, a C chemokine, under physiological solution conditions. J Biol Chem 2002; 277: 17863–17870.
- 66 Veldkamp CT,Peterson FC,Pelzek AJ,Volkman BF. The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin. Protein Sci 2005; 14: 1071–1081.
- 67 Pettersen EF,Goddard TD,Huang CC,Couch GS,Greenblatt DM,Meng EC,Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605–1612.
- 68 Wilken J,Hoover D,Thompson DA,Barlow PN,Mcsparron H,Picard L,Wlodawer A,Lubkowski J,Kent SB. Total chemical synthesis and high-resolution crystal structure of the potent anti-HIV protein AOP-RANTES. Chem Biol 1999; 6: 43–51.
- 69 Mellado M,Rodriguez-Frade JM,Manes S,Martinez AC. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2001; 19: 397–421.
- 70 Clark-Lewis I,Kim K-S,Rajarathnam K,Gong J-H,Dewald B,Moser B,Baggiolini M,Sykes BD. Structure-activity relationships of chemokines. J Leukoc Biol 1995; 57: 703–711.
- 71 Hoover DM,Mizoue LS,Handel TM,Lubkowski J. The crystal structure of the chemokine domain of fractalkine shows a novel quaternary arrangement. J Biol Chem 2000; 275: 23187–23193.
- 72 Lubkowski J,Bujacz G,Boque L,Domaille PJ,Handel TM,Wlodawer A. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol 1997; 4: 64–69.
- 73 Hoogewerf AJ,Kuschert GSV,Proudfoot AEI,Borlat F,Clark-Lewis I,Power CA,Wells TNC. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 1997; 36: 13570–13578.