Modularity of intrinsic disorder in the human proteome†
Melissa M. Pentony
Department of Biology, Centre for Genomics and Systems Biology, New York University, New York
Search for more papers by this authorCorresponding Author
David T. Jones
Bioinformatics Group, Department of Computer Science, University College London, London, United Kingdom
Bioinformatics Group, Department of Computer science, University College London, London, United Kingdom===Search for more papers by this authorMelissa M. Pentony
Department of Biology, Centre for Genomics and Systems Biology, New York University, New York
Search for more papers by this authorCorresponding Author
David T. Jones
Bioinformatics Group, Department of Computer Science, University College London, London, United Kingdom
Bioinformatics Group, Department of Computer science, University College London, London, United Kingdom===Search for more papers by this authorThe authors state no conflict of interest.
Abstract
Predicting regions of disorder has become of increasing interest when determining protein structure and function. With ∼33% of eukaryotic proteins having significant disordered regions, and an increasing occurrence of disorder in higher organisms, an analysis of the importance of disorder from an evolutionary perspective was clearly warranted. Focusing on the human proteome, we have studied how abundant disorder is and its relevance to protein function and structure. We have shown that disordered regions frequently appear to be independent functional units, and judged by complete association to certain protein domains, may be evolutionarily conserved. Our work also supports previous analyses on association between disorder and alternate splicing and provides support for the modularity of disorder by showing that with respect to splicing events, disordered regions frequently appear to be spliced as whole units. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22504_sm_suppinfo.doc1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Uversky VN. What does it mean to be natively unfolded? Eur J Biochem 2002; 269: 2–12.
- 2 Uversky VN,Oldfield CJ,Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation, and cell signaling. JMol Recognit 2005; 18: 343–384.
- 3 Lise S,Jones DT. Sequence patterns associated with disordered regions in proteins. Proteins 2005; 58: 144–150.
- 4 Wright PE,Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293: 321–331.
- 5 Haynes C,Oldfield CJ,Ji F,Klitgord N,Cusick ME,Radivojac P,Uversky VN,Vidal M,Iakoucheva LM. Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2006; 2: e100.
- 6 Dyson HJ,Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005; 6: 197–208.
- 7 Dunker AK,Lawson JD,Brown CJ,Williams RM,Romero P,Oh JS,Oldfield CJ,Campen AM,Ratliff CM,Hipps KW,Ausio J,Nissen MS,Reeves R,Kang C,Kissinger CR,Bailey RW,Griswold MD,Chiu W,Garner EC,Obradovic Z. Intrinsically disordered protein. J Mol Graph Model 2001; 19: 26–59.
- 8 Dunker AK,Obradovic Z. The protein trinity–linking function and disorder. Nat Biotechnol 2001; 19: 805–806.
- 9 Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27: 527–533.
- 10 Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002; 11: 739–756.
- 11 Dunker AK,Cortese MS,Romero P,Iakoucheva LM,Uversky VN. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 2005; 272: 5129–5148.
- 12 Chen JW,Romero P,Uversky VN,Dunker AK. Conservation of intrinsic disorder in protein domains and families. I. A database of conserved predicted disordered regions. J Proteome Res 2006; 5: 879–887.
- 13 Radivojac P,Iakoucheva LM,Oldfield CJ,Obradovic Z,Uversky VN,Dunker AK. Intrinsic disorder and functional proteomics. Biophys J 2007; 92: 1439–1456.
- 14 Oldfield CJ,Meng J,Yang JY,Yang MQ,Uversky VN,Dunker AK. Flexible nets: disorder and induced fit in the associations of p53 and 14–3-3 with their partners. BMC Genomics 2008; 9 ( Suppl 1): S1.
- 15 Receveur-Brechot V,Bourhis JM,Uversky VN,Canard B,Longhi S. Assessing protein disorder and induced folding. Proteins 2006; 62: 24–45.
- 16
Uversky VN,Gillespie JR,Fink AL.
Why are “natively unfolded” proteins unstructured under physiologic conditions?
Proteins
2000;
41:
415–427.
10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 17 Dunker AK,Brown CJ,Lawson JD,Iakoucheva LM,Obradovic Z. Intrinsic disorder and protein function. Biochemistry 2002; 41: 6573–6582.
- 18 Ward JJ,Sodhi JS,McGuffin LJ,Buxton BF,Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 337: 635–645.
- 19 Vucetic S,Xie H,Iakoucheva LM,Oldfield CJ,Dunker AK,Obradovic Z,Uversky VN. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 2007; 6: 1899–1916.
- 20 Xie H,Vucetic S,Iakoucheva LM,Oldfield CJ,Dunker AK,Uversky VN,Obradovic Z. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 2007; 6: 1882–1898.
- 21 Iakoucheva LM,Radivojac P,Brown CJ,O'Connor TR,Sikes JG,Obradovic Z,Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32: 1037–1049.
- 22 Ward JJ,McGuffin LJ,Bryson K,Buxton BF,Jones DT. The DISOPRED server for the prediction of protein disorder. Bioinformatics 2004; 20: 2138–2139.
- 23 Liu J,Perumal NB,Oldfield CJ,Su EW,Uversky VN,Dunker AK. Intrinsic disorder in transcription factors. Biochemistry 2006; 45: 6873–6888.
- 24 Lander ES,Linton LM,Birren B,Nusbaum C,Zody MC,Baldwin J,Devon K,Dewar K,Doyle M,FitzHugh W,Funke R,Gage D,Harris K,Heaford A,Howland J,Kann L,Lehoczky J,LeVine R,McEwan P,McKernan K,Meldrim J,Mesirov JP,Miranda C,Morris W,Naylor J,Raymond C,Rosetti M,Santos R,Sheridan A,Sougnez C,Stange-Thomann N,Stojanovic N,Subramanian A,Wyman D,Rogers J,Sulston J,Ainscough R,Beck S,Bentley D,Burton J,Clee C,Carter N,Coulson A,Deadman R,Deloukas P,Dunham A,Dunham I,Durbin R,French L,Grafham D,Gregory S,Hubbard T,Humphray S,Hunt A,Jones M,Lloyd C,McMurray A,Matthews L,Mercer S,Milne S,Mullikin JC,Mungall A,Plumb R,Ross M,Shownkeen R,Sims S,Waterston RH,Wilson RK,Hillier LW,McPherson JD,Marra MA,Mardis ER,Fulton LA,Chinwalla AT,Pepin KH,Gish WR,Chissoe SL,Wendl MC,Delehaunty KD,Miner TL,Delehaunty A,Kramer JB,Cook LL,Fulton RS,Johnson DL,Minx PJ,Clifton SW,Hawkins T,Branscomb E,Predki P,Richardson P,Wenning S,Slezak T,Doggett N,Cheng JF,Olsen A,Lucas S,Elkin C,Uberbacher E,Frazier M,Gibbs RA,Muzny DM,Scherer SE,Bouck JB,Sodergren EJ,Worley KC,Rives CM,Gorrell JH,Metzker ML,Naylor SL,Kucherlapati RS,Nelson DL,Weinstock GM,Sakaki Y,Fujiyama A,Hattori M,Yada T,Toyoda A,Itoh T,Kawagoe C,Watanabe H,Totoki Y,Taylor T,Weissenbach J,Heilig R,Saurin W,Artiguenave F,Brottier P,Bruls T,Pelletier E,Robert C,Wincker P,Smith DR,Doucette-Stamm L,Rubenfield M,Weinstock K,Lee HM,Dubois J,Rosenthal A,Platzer M,Nyakatura G,Taudien S,Rump A,Yang H,Yu J,Wang J,Huang G,Gu J,Hood L,Rowen L,Madan A,Qin S,Davis RW,Federspiel NA,Abola AP,Proctor MJ,Myers RM,Schmutz J,Dickson M,Grimwood J,Cox DR,Olson MV,Kaul R,Shimizu N,Kawasaki K,Minoshima S,Evans GA,Athanasiou M,Schultz R,Roe BA,Chen F,Pan H,Ramser J,Lehrach H,Reinhardt R,McCombie WR,de la Bastide M,Dedhia N,Blocker H,Hornischer K,Nordsiek G,Agarwala R,Aravind L,Bailey JA,Bateman A,Batzoglou S,Birney E,Bork P,Brown DG,Burge CB,Cerutti L,Chen HC,Church D,Clamp M,Copley RR,Doerks T,Eddy SR,Eichler EE,Furey TS,Galagan J,Gilbert JG,Harmon C,Hayashizaki Y,Haussler D,Hermjakob H,Hokamp K,Jang W,Johnson LS,Jones TA,Kasif S,Kaspryzk A,Kennedy S,Kent WJ,Kitts P,Koonin EV,Korf I,Kulp D,Lancet D,Lowe TM,McLysaght A,Mikkelsen T,Moran JV,Mulder N,Pollara VJ,Ponting CP,Schuler G,Schultz J,Slater G,Smit AF,Stupka E,Szustakowski J,Thierry-Mieg D,Thierry-Mieg J,Wagner L,Wallis J,Wheeler R,Williams A,Wolf YI,Wolfe KH,Yang SP,Yeh RF,Collins F,Guyer MS,Peterson J,Felsenfeld A,Wetterstrand KA,Patrinos A,Morgan MJ,de Jong P,Catanese JJ,Osoegawa K,Shizuya H,Choi S,Chen YJ. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.
- 25 Li W,Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22: 1658–1659.
- 26 Jones DT. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007; 23: 538–544.
- 27 Jones DT,Taylor WR,Thornton JM. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 1994; 33: 3038–3049.
- 28 Romero P,Obradovic Z,Li X,Garner EC,Brown CJ,Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42: 38–48.
- 29 Ashburner M,Ball CA,Blake JA,Botstein D,Butler H,Cherry JM,Davis AP,Dolinski K,Dwight SS,Eppig JT,Harris MA,Hill DP,Issel-Tarver L,Kasarskis A,Lewis S,Matese JC,Richardson JE,Ringwald M,Rubin GM,Sherlock G. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.
- 30 Romero PR,Zaidi S,Fang YY,Uversky VN,Radivojac P,Oldfield CJ,Cortese MS,Sickmeier M,LeGall T,Obradovic Z,Dunker AK. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci USA 2006; 103: 8390–8395.
- 31 Notredame C,Higgins DG,Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000; 302: 205–217.
- 32 Sickmeier M,Hamilton JA,LeGall T,Vacic V,Cortese MS,Tantos A,Szabo B,Tompa P,Chen J,Uversky VN,Obradovic Z,Dunker AK. DisProt: The database of disordered proteins. Nucleic Acids Res 2007; 35: D786–D793.
- 33 Reeves R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene 2001; 277: 63–81.
- 34 Xie H,Vucetic S,Iakoucheva LM,Oldfield CJ,Dunker AK,Obradovic Z,Uversky VN. Functional anthology of intrinsic disorder. III. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 2007; 6: 1917–1932.
- 35 Lobley A,Swindells MB,Orengo CA,Jones DT. Inferring function using patterns of native disorder in proteins. PLoS Comput Biol 2007, 3: e162.
- 36 Siepen JA,Belhajjame K,Selley JN,Embury SM,Paton NW,Goble CA,Oliver SG,Stevens R,Zamboulis L,Martin N,Poulovassillis A,Jones P,Cote R,Hermjakob H,Pentony MM,Jones DT,Orengo CA,Hubbard SJ. ISPIDER Central: An integrated database web-server for proteomics. Nucleic Acids Res 2008; 36: W485–W490.
- 37 Thompson JD,Higgins DG,Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.
- 38 Dunker AK,Brown CJ,Obradovic Z. Identification and functions of usefully disordered proteins. Adv Protein Chem 2002; 62: 25–49.
- 39 Singh GP,Ganapathi M,Dash D. Role of intrinsic disorder in transient interactions of hub proteins. Proteins 2007; 66: 761–765.
- 40 Bustos DM,Iglesias AA. Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins 2006; 63: 35–42.
- 41 Iakoucheva LM,Brown CJ,Lawson JD,Obradovic Z,Dunker AK. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 2002; 323: 573–584.
- 42 Birzele F,Csaba G,Zimmer R. Alternative splicing and protein structure evolution. Nucleic Acids Res 2008; 36: 550–558.
- 43 Tompa P,Fuxreiter M,Oldfield CJ,Simon I,Dunker AK,Uversky VN. Close encounters of the third kind: disordered domains and the interactions of proteins. Bioessays 2009; 31: 328–335.