Solution structure of hypothetical nudix hydrolase DR0079 from extremely radiation-resistant Deinococcus radiodurans bacterium
Garry W. Buchko
Fundamental Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
Search for more papers by this authorShuisong Ni
Fundamental Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
Search for more papers by this authorStephen R. Holbrook
Structural Biology Department, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California
Search for more papers by this authorCorresponding Author
Michael A. Kennedy
Fundamental Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
Fundamental Sciences, Biological Division, Batelle, Pacific Northwest National Laboratory, PO Box 999, Mail Stop K8-98, Richland, WA 99352===Search for more papers by this authorGarry W. Buchko
Fundamental Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
Search for more papers by this authorShuisong Ni
Fundamental Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
Search for more papers by this authorStephen R. Holbrook
Structural Biology Department, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California
Search for more papers by this authorCorresponding Author
Michael A. Kennedy
Fundamental Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
Fundamental Sciences, Biological Division, Batelle, Pacific Northwest National Laboratory, PO Box 999, Mail Stop K8-98, Richland, WA 99352===Search for more papers by this authorAbstract
Using nuclear magnetic resonance (NMR) based methods, including residual dipolar coupling restraints, we have determined the solution structure of the hypothetical Deinococcus radiodurans Nudix protein DR0079 (171 residues, MW = 19.3 kDa). The protein contains eight β-strands and three α-helices organized into three subdomains: an N-terminal β-sheet (1–34), a central Nudix core (35–140), and a C-terminal helix-turn-helix (141–171). The Nudix core and the C-terminal helix-turn-helix form the fundamental fold common to the Nudix family, a large mixed β-sheet sandwiched between α-helices. The residues that compose the signature Nudix sequence, GX5EX7REUXEEXGU (where U = I, L, or V and X = any amino acid), are contained in a turn-helix-turn motif on the face of the mixed β-sheet. Chemical shift mapping experiments suggest that DR0079 binds Mg2+. Experiments designed to determine the biological function of the protein indicate that it is not a type I isopentenyl-diphosphate δ-isomerase and that it does not bind α,β-methyleneadenosine 5′-triphosphate (AMPCPP) or guanosine 5′-[β,γ-imido]triphosphate (GMPPNP). In this article, the structure of DR0079 is compared to other known Nudix protein structures, a potential substrate-binding surface is proposed, and its possible biological function is discussed. Proteins 2004;55:000–000. © 2004 Wiley-Liss, Inc.
REFERENCES
- 1
Moseley BEB.
Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans.
Photochem Photobiol
1983;
13:
223–274.
10.1007/978-1-4684-4505-3_5 Google Scholar
- 2 Mattimore V, Battista JR. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 1996; 178: 633–637.
- 3 Battista A. Against all odds: The survival strategies of Deinococcus radiodurans. Ann Rev Microbiol 1997; 51: 203–224.
- 4 Minton KW. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 1994; 13: 9–15.
- 5 Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 2003; 299: 254–256.
- 6 White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketcham KA, Nelson KE, Salzberg S, Smith HO, Venter JC, Fraser CM, et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999; 286: 1571–1577.
- 7 Bessman MJ, Frick N, O'Handley SF. The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 1996; 271: 25059–25062.
- 8 Dunn CA, O'Handley SF, Frick DN, Bessman MJ. Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 1999; 274: 32318–32324.
- 9 Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet 1993; 9: 246–249.
- 10 Pavlov YI, D. T. M, Izuta S, Kunkel TA. DNA replication fidelity with 8-oxodeoxyguanosine triphosphate. Biochemistry 1994; 33: 4695–4701.
- 11 Maki H, Sekiguchi M. MutT protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis. Nature 1992; 355: 273–275.
- 12 Abeygunawardana C, Weber DJ, Gittis AG, Frick DN, Lin J, Miller AF, Bessman MJ, Mildvan AS. Solution structure of the MutT enzyme, a nucleoside triphosphate pyrophosphohydrolase. Biochemistry 1995; 34: 14997–15005.
- 13 Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL. The Pfam protein families database. Nucleic Acids Res 2002; 30: 276–280.
- 14 Lin J, Abeygunawardana C, Frick DN, Bessman MJ, Mildvan AS. Solution structure of the quaternary MutT-M2+-AMPCPP-M2+ complex and mechanism of its pyrophosphohydrolase action. Biochemistry 1997; 36: 1199–1211.
- 15 Fletcher JI, Swarbrick JD, Maksel D, Gayler KR, Gooley PR. The structure of Ap(4)A hydrolase complexed with ATP-MgF(x) reveals the basis of substrate binding. Structure 2002; 10: 205–213.
- 16 Bailey S, Sedelnikova SE, Blackburn GM, Abdelghany HM, Baker PJ, McLennan AG, Rafferty JB. The crystal structure of diadenosine tetraphosphate hydrolase from Caenorhabditis elegans in free and binary complex forms. Structure 2002; 10: 589–600.
- 17 Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol 2001; 8: 467–472.
- 18 Kang L-W, Gabelli SB, Cunningham JE, O'Handley SF, Amzel LM. Structure and mechanism of MT-ADPRase, a Nudix hydrolase from Mycobacterium tuberculosis. Structure 2003; 11: 1015–1023.
- 19 Wang S, Mura C, Sawaya MR, Cascio D, Eisenberg D. Structure of a Nudix protein from Pyrobaculum aerophilum reveals a dimer with two intersubunit beta-sheets. Acta Crystallogr 2002; D58: 571–578.
- 20 Kang L-W, Gabelli SB, Bianchet MA, Xu WL, Bessman MJ, Amzel LM. Structure of a coenzyme A pyrophosphatase from Deinococcus radiodurans: a member of the Nudix family. J Bacteriol 2003; 185: 4110–4118.
- 21 Xu W, Shen J, Dunn CA, Desai S, Bessman MJ. The Nudix hydrolases of Deinococcus radiodurans. Mol Microbiol 2001; 39: 286–290.
- 22 Zuiderweg ERP. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 2002; 41: 1–7.
- 23 Shukar SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins. Science 1996; 274: 1531–1534.
- 24 Buchko GW, Daughdrill GW, de Lorimier R, Rao BK, Isern NG, Lingbeck JM, Taylor JS, Wold MS, Gochin M, Spicer LD, Lowry DF, Kennedy MA. Interactions of human nucleotide excision repair protein XPA with DNA and RPA70ΔC327: Chemical shift mapping and 15N NMR relaxation studies. Biochemistry 1999; 38: 15116–15128.
- 25 Buchko GW, Ni S, Holbrook SR, Kennedy MA. 1H, 13C, and 15N NMR assignments of the hypothetical Nudix protein DR0079 from the extremely radiation-resistant bacterium Deinococcus radiodurans. J Biomol NMR 2003; 25: 169–170.
- 26 Holbrook EL, Schulze-Gahmen U, Buchko GW, Ni S, Kennedy MA, Holbrook SR. Purification, crystallization and preliminary X-ray analysis of two Nudix hydrolases from Deinococcus radiodurans. Acta Crystallogr 2003; D59: 737–740.
- 27 Kay LE, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlated spectroscopy with improved sensitivity. J Amer Chem Soc 1992; 114: 10663–10665.
- 28 Zhang O, Kay LE, Olivier JP, Forman-Kay JD. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR 1994; 4: 845–858.
- 29 Pascal SM, Muhandiram DR, Yamazaki T, Forman-Kay JD, Kay LE. Simultaneous acquisition of 15N- and 13C-edited NOE spectra of proteins dissolved in H2O. J Magn Res B 1994; 103: 197–201.
- 30 Vuister GW, Clore GM, Gronenborn AM, Powers R, Garrett DS, Tschudin R, Bax A. Increased resolution and improved spectral quality in 4-dimensional 13C/13C-separated HMQC-NOESY-HMQC spectra using pulsed field gradients. J Magn Res B 1993; 101: 201–213.
- 31 Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 1994; 33: 5984–6003.
- 32 Hansen MR, Mueller L, Pardi A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 1998; 5: 1065–1074.
- 33 Ottiger M, Delaglio F, Bax A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 1998; 131: 373–378.
- 34 Clore GM, Gronenborn AM, Bax A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented marcromolecules in the absence of structural information. J Magn Res 1998; 133: 216–221.
- 35 Neri D, Szyperski T, Otting G, Senn H, Wütrich K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional carbon-13 labeling. Biochemistry 1989; 28: 7510–7516.
- 36 Wishart DS, Sykes BD. The 13C chemical-shift index: A simple method for the identification of protein secondary structure using 13C chemical shift data. J Biomol NMR 1994; 4: 171–180.
- 37 Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculations with new program DYANA. J Mol Biol 1997; 273: 283–298.
- 38 Brünger AT, Adams PD, Clore GM, Delano WL, Gros P, R. W. G-K, Jiang J-S, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren G. Crystallography and NMR System (CNS): A new software suite for macromolecular structure determination. Acta Crystallogr 1998; D54: 905–921.
- 39 Choy W-Y, Tollinger M, Mueller GA, Kay LE. Direct structure refinement of high molecular weight proteins against dipolar coupling and carbonyl chemical shift changes upon alignment: an application to maltose binding protein. J Biomol NMR 2001; 21: 31–40.
- 40 Cornilescu G, Delagio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 1999; 13: 289–301.
- 41 Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996; 8: 477–486.
- 42 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.
- 43 Massiah MA, Saraswat V, Azurmendi HF, Mildvan AS. Solution structure and NH exchange studies of the MutT pyrophosphohydrolase complexed with Mg2+ and 8-oxo-dGMP, a tightly bound product. Biochemistry 2003; 42: 10140–10154.
- 44 Lin J, Abeygunawardana C, Frick DN, Bessman, M. J., Mildvan AS. The role of glu 57 in the mechanism of the Escherichia coli MutT enzyme by mutagenesis and heteronuclear NMR. Biochemistry 1996; 35: 6715–6726.
- 45 Holm L, Sander C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res 1998; 26: 316–319.
- 46 Bonanno JB, Edo C, Eswar N, Pieper U, Romanowski MJ, Ilyin V, Gerchman SE, Kycia H, Studier FW, Sali A, Burley SK. Structural genomics of enzymes involved in sterol/isoprenoid biosynthesis. Proc Natl Acad Sci 2001; 98: 12896–12901.
- 47 Wouters J, Oudjama Y, Barkley SJ, Tricot C, Stalon V, Droogmans L, Poulter CD. Catalytic mechanism of Escherichia coli isopentyl diphosphate isomerase involves Cys-67, Glu-116, and Tyr-104 as suggested by crystal structures of complexes with transition state analogues and irreversible inhibitors. J Biol Chem 2003; 278: 11903–11908.
- 48 Satterwhite DM. Steroids and isoprenoids. Methods Enzymol 1985; 110: 92–99.
- 49 Bhatnagar SK, Bessman MJ. Studies on the mutator gene, mutT of Escherichia coli: molecular cloning of the gene product, and identification of a novel nucleoside triphosphatase. J Biol Chem 1988; 263: 8953–8957.
- 50 Chen T, Reizer J, Saier MH, Jr, Fairbrother WJ, Wright PE. Mapping of the binding interfaces of the proteins of the bacterial phosphotransferase system, HPr and IIAglc. J Biomol NMR 1993; 21: 31–40.
- 51 Lipton MS, Pasa-Tolic L, Anderson GA, Anderson DJ, Auberry DL, Battista JR, Daly MJ, Fredrickson J, Hixson KK, Kostandarithes H, Masselon C, Markillie LM, Moore RJ, Romine MF, Shen Y, Stritmatter E, Tolic N, Udseth HR, Venkateswaran A, Wong K-K, Zhao R, Smith RD. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci 2002; 99: 11049–11054.