N, S-Doped Carbon Dots as Additive for Suppression of Zinc Dendrites in Alkaline Electrolyte†
Shan Cai
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
These authors contributed equally to this work.
Search for more papers by this authorGe Chang
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Jiugang Hu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorJiae Wu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorYuqing Luo
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorGuoqiang Zou
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Hongshuai Hou
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorShan Cai
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
These authors contributed equally to this work.
Search for more papers by this authorGe Chang
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Jiugang Hu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorJiae Wu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorYuqing Luo
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorGuoqiang Zou
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Hongshuai Hou
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorDedicated to the Special Issue of Carbon Dots Based Functional Materials.
Comprehensive Summary
The severe dendrite growth on zinc anode in alkaline electrolyte brings great challenge to the development of zinc-based batteries. It is a simple and effective strategy to inhibit zinc dendrite formation by introducing additives into the electrolyte. In this study, N, S-doped carbon dots (TU-CQDs) were synthesized and used as additives to regulate zinc deposition in a typical KOH electrolyte. The experimental and three-dimensional transient nucleation model disclosed that the special functional groups of carbon dots can change the electrode surface state and the coordination behaviors of zinc species in the electrolyte. Therefore, TU-CQDs can not only inhibit the hydrogen evolution reaction, but also achieve uniform zinc deposition. The in-situ synchrotron radiation X-ray imaging elucidated that TU-CQDs can effectively inhibit the dendrite growth and improve the reversibility of zinc plating/stripping process. This work provides a feasible route for regulating the reversibility of zinc metal anode in alkaline electrolyte.
References
- 1(a) Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 1604685; (b) Sorour, N.; Zhang, W.; Ghali, E.; Houlachi, G. A Review of Organic Additives in Zinc Electrodeposition Process (Performance and Evaluation). Hydrometallurgy 2017, 171, 320–332; (c) Yang, C.; Zhang, Z.; Tian, Z.; Lai, Y.; Zhang, K.; Li, J. Influences of Carboxymethyl Cellulose on Two Anodized-Layer Structures of Zinc in Alkaline Solution. J. Alloys Compd. 2018, 734, 152–162; (d) Deng, Y.; Liang, R.; Jiang, G.; Jiang, Y.; Yu, A.; Chen, Z. The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Lett. 2020, 5, 1665–1675; (e) Li, Q.; Zhao, Y.; Mo, F.; Wang, D.; Yang, Q.; Huang, Z.; Liang, G.; Chen, A.; Zhi, C. Dendrites Issues and Advances in Zn Anode for Aqueous Rechargeable Zn-Based Batteries. EcoMat 2020, 2, e12035; (f) Zhang, X.; Wang, L.; Fu, H. Recent Advances in Rechargeable Zn-Based Batteries. J. Power Sources 2021, 493, 229677; (g) Shang, W.; Yu, W.; Liu, Y.; Li, R.; Dai, Y.; Cheng, C.; Tan, P.; Ni, M. Rechargeable Alkaline Zinc Batteries: Progress and Challenges. Energy Stor. Mater. 2020, 31, 44–57.
- 2(a) Fu, H.; Wen, Q.; Li, P. Y.; Wang, Z. y.; He, Z. j.; Yan, C.; Mao, J.; Dai, K. h.; Zhang, X. h.; Zheng, J. c. In-Situ Chemical Conversion Film for Stabilizing Zinc Metal Anodes. J. Energy Chem. 2022, 73, 387–393; (b) Li, B.; Xue, J.; Han, C.; Liu, N.; Ma, K.; Zhang, R.; Wu, X.; Dai, L.; Wang, L.; He, Z. A Hafnium Oxide-Coated Dendrite-Free Zinc Anode for Rechargeable Aqueous Zinc-Ion Batteries. J. Colloid Interface Sci. 2021, 599, 467–475.
- 3(a) Xu, M.; Chen, J.; Zhang, Y.; Raza, B.; Lai, C.; Wang, J. Electrolyte Design Strategies Towards Long-Term Zn Metal Anode for Rechargeable Batteries. J. Energy Chem. 2022, 73, 575–587; (b) Gao, J.; Xie, X.; Liang, S.; Lu, B.; Zhou, J. Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries. Nano-Micro Lett. 2021, 13, 69.
- 4(a) Liu, L.; Yang, Z. The Composite of ZnSn(OH)6 and Zn-Al Layered Double Hydroxides Used as Negative Material for Zinc-Nickel Alkaline Batteries. Ionics 2018, 24, 2035–2045; (b) Lim, M. B.; Lambert, T. N.; Ruiz, E. I. Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge. J. Electrochem. Soc. 2020, 167, 060508.
- 5(a) Elrouby, M.; El Shafy Shilkamy, H. A.; Elsayed, A. Development of the Electrochemical Performance of Zinc via Alloying with Indium as Anode for Alkaline Batteries Application. J. Alloys Compd. 2021, 854, 157285; (b) Stock, D.; Dongmo, S.; Janek, J.; Schröder, D. Benchmarking Anode Concepts: The Future of Electrically Rechargeable Zinc-Air Batteries. ACS Energy Lett. 2019, 4, 1287–1300; (c) Zhang, J.; Peng, W.; Jin, J.; Yang, S.; Yu, A.; Li, G. Artificial Solid-Electrolyte Interface Facilitating Uniform Zn Deposition by Promoting Chemical Adsorption. Sci. China Mater. 2022, 65, 663–674.
- 6 Shivkumar, R.; Paruthimal Kalaignan, G.; Vasudevan, T. Effect of Additives on Zinc Electrodes in Alkaline Battery Systems. J. Power Sources 1995, 55, 53–62.
- 7 Luo, H.; Liu, B.; Yang, Z.; Wan, Y.; Zhong, C. The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries. Electrochem. Energy Rev. 2022, 5, 187–210.
- 8 Gelman, D.; Drezner, H.; Kraytsberg, A.; Starosvetsky, D.; Ein-Eli, Y. Enhanced Zinc Corrosion Mitigation via a Tuned Thermal Pretreatment in an Alkaline Solution Containing an Organic Inhibitor. J. Solid State Electrochem. 2018, 22, 2217–2226.
- 9 Hosseini, S.; Han, S. J.; Arponwichanop, A.; Yonezawa, T.; Kheawhom, S. Ethanol as an Electrolyte Additive for Alkaline Zinc-Air Flow Batteries. Sci. Rep. 2018, 8, 11273.
- 10 Zhao, Z.; Fan, X.; Ding, J.; Hu, W.; Zhong, C.; Lu, J. Challenges in Zinc Electrodes for Alkaline Zinc-Air Batteries: Obstacles to Commercialization. ACS Energy Lett. 2019, 4, 2259–2270.
- 11 Diggle, J. W.; Damjanovic, A. The Inhibition of the Dendritic Electrocrystallization of Zinc from Doped Alkaline Zincate Solutions. J. Electrochem. Soc. 1972, 119, 1649.
- 12 Zeng, D.; Yang, Z.; Wang, S.; Ni, X.; Ai, D.; Zhang, Q. Preparation and Electrochemical Performance of In-doped ZnO as Anode Material for Ni-Zn Secondary Cells. Electrochim. Acta 2011, 56, 4075–4080.
- 13 Park, D.-J.; Aremu, E. O.; Ryu, K.-S. Bismuth Oxide as an Excellent Anode Additive for Inhibiting Dendrite Formation in Zinc-Air Secondary Batteries. Appl. Surf. Sci. 2018, 456, 507–514.
- 14 Yuan, Y. F.; Tu, J. P.; Wu, H. M.; Li, Y.; Shi, D. Q.; Zhao, X. B. Effect of ZnO Nanomaterials Associated with Ca(OH)2 as Anode Material for Ni-Zn Batteries. J. Power Sources 2006, 159, 357–360.
- 15 Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. Carbon Nanodots: Synthesis, Properties and Applications. J. Mater. Chem. 2012, 22, 24230.
- 16 Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New Perspectives on the Charging Mechanisms of Supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744.
- 17 Hou, H.; Banks, C. E.; Jing, M.; Zhang, Y.; Ji, X. Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. Adv. Mater. 2015, 27, 7861–7866.
- 18 Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon Quantum Dot-Based Composites for Energy Storage and Electrocatalysis: Mechanism, Applications and Future Prospects. Nano Energy 2019, 66, 104093.
- 19(a) Qin, H.; Kuang, W.; Hu, N.; Zhong, X.; Huang, D.; Shen, F.; Wei, Z.; Huang, Y.; Xu, J.; He, H. Building Metal-Molecule Interface Towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries. Adv. Funct. Mater. 2022, 32, 2206695; (b) Guo, J.; Zhang, W.; Yin, J.; Zhu, Y.; Mohammed, Z. O. F.; Alshareef, H. N. Zincophilic Laser-Scribed Graphene Interlayer for Homogeneous Zinc Deposition and Stable Zinc-Ion Batteries. Energy Technol. 2021, 9, 2100490.
- 20(a) Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angew. Chem. Int. Ed. 2009, 48, 4598–4601; (b) Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew. Chem. Int. Ed. 2013, 52, 3953–3957.
- 21 Chen, P.; Zhang, Q.; Su, Y.; Shen, L.; Wang, F.; Liu, H.; Liu, Y.; Cai, Z.; Lv, W.; Liu, G. Accelerated Photocatalytic Degradation of Diclofenac by a Novel CQDs/BiOCOOH Hybrid Material under Visible-Light Irradiation: Dechloridation, Detoxicity, and a New Superoxide Radical Model Study. Chem. Eng. J. 2018, 332, 737–748.
- 22 Li, W.-K.; Feng, J.-T.; Ma, Z.-Q. Nitrogen, Sulfur, Boron and Flavonoid Moiety Co-Incorporated Carbon Dots for Sensitive Fluorescence Detection of Pesticides. Carbon 2020, 161, 685–693.
- 23 Tao, L.; Yang, Y.; Wang, H.; Zheng, Y.; Hao, H.; Song, W.; Shi, J.; Huang, M.; Mitlin, D. Sulfur-Nitrogen Rich Carbon as Stable High Capacity Potassium Ion Battery Anode: Performance and Storage Mechanisms. Energy Stor. Mater. 2020, 27, 212–225.
- 24 Song, Y.; Hu, J.; Tang, J.; Gu, W.; He, L.; Ji, X. Real-Time X-Ray Imaging Reveals Interfacial Growth, Suppression, and Dissolution of Zinc Dendrites Dependent on Anions of Ionic Liquid Additives for Rechargeable Battery Applications. ACS Appl. Mater. Interfaces 2016, 8, 32031–32040.
- 25(a) Zhao, Z.; Zhao, J.; Hu, Z.; Li, J.; Li, J.; Zhang, Y.; Wang, C.; Cui, G. Long-Life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener-Inspired Interphase. Energy Environ. Sci. 2019, 12, 1938–1949; (b) Wu, Y.; Deng, Y.; Zhang, K.; Wang, Y.; Wang, L.; Yan, L. A Flexible and Highly Ion Conductive Polyzwitterionic Eutectogel for Quasi-Solid State Zinc Ion Batteries with Efficient Suppression of Dendrite Growth. J. Mater. Chem. A 2022, 10, 17721–17729.
- 26 Ait Himi, M.; El ghachtouli, S.; Youbi, B.; Lghazi, Y.; Bimaghra, I. Nucleation and Growth Mechanism of Manganese Oxide Electrodeposited on ITO Substrate. Mater. Today: Proc. 2020, 30, 963–969.
- 27 Scharifker, B.; Hills, G. Theoretical and Experimental Studies of Multiple Nucleation. Electrochim. Acta 1983, 28, 879–889.
- 28(a) Li, Y.; Wu, P.; Zhong, W.; Xie, C.; Xie, Y.; Zhang, Q.; Sun, D.; Tang, Y.; Wang, H. A Progressive Nucleation Mechanism Enables Stable Zinc Stripping-Plating Behavior. Energy Environ. Sci. 2021, 14, 5563–5571; (b) Zhou, X.; Wang, Y.; Liang, Z.; Jin, H. Electrochemical deposition and nucleation/growth mechanism of Ni-Co-Y2O3 multiple coatings. Materials 2018, 11, 1124.
- 29 Gu, W.; Liu, C.; Hu, J.; Song, Y.; He, L.; Luo, W.; Zhi, Y.; Ji, X. Inhibiting Mossy Zinc Electrodeposits from Ammoniacal Media with Hydrophobic Tetraalkyammonium Salts. J. Electrochem. Soc. 2016, 164, D6.
- 30 Lee, C. W.; Sathiyanarayanan, K.; Eom, S. W.; Kim, H. S.; Yun, M. S. Novel Electrochemical Behavior of Zinc Anodes in Zinc/Air Batteries in the Presence of Additives. J. Power Sources 2006, 159, 1474–1477.
- 31 Yang, X.; Liu, S.; Tang, J.; Chang, G.; Fu, Y.; Jin, W.; Ji, X.; Hu, J. Effective Inhibition of Zinc Dendrites During Electrodeposition Using Thiourea Derivatives as Additives. J. Mater. Sci. 2019, 54, 3536–3546.
- 32 Zhang, Q.; Yu, X.; Hua, Y.; Xue, W. The Effect of Quaternary Ammonium-Based Ionic Liquids on Copper Electrodeposition from Acidic Sulfate Electrolyte. J. Appl. Electrochem. 2015, 45, 79–86.
- 33 Yang, H.; Guo, C.; Naveed, A.; Lei, J.; Yang, J.; Nuli, Y.; Wang, J. Recent Progress and Perspective on Lithium Metal Anode Protection. Energy Stor. Mater. 2018, 14, 199–221.
- 34 Ma, X.; Wang, J.; Wang, X.; Zhao, L.; Xu, C. Aqueous V2O5/Activated Carbon Zinc-Ion Hybrid Capacitors with High Energy Density and Excellent Cycling Stability. J. Mater. Sci.: Mater. Electron. 2019, 30, 5478–5486.
- 35 Hou, H.; Shao, L.; Zhang, Y.; Zou, G.; Chen, J.; Ji, X. Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600243.
Citing Literature
15 July, 2023
Pages 1697-1704