Valorization of grape by-products as functional and nutritional ingredients for healthy pasta development
Beatriz Ewert Oliveira
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorLuana Contini
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorVitor Augusto dos Santos Garcia
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorLilian Pinheiro de Lima Cilli
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorEduardo Galvão Leite Chagas
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorMarcio Adriano Andreo
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorFernanda Maria Vanin
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorRosemary Aparecida Carvalho
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorPatricia Sinnecker
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorAnna Cecilia Venturini
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Cristiana Maria Pedroso Yoshida
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Correspondence
Cristiana Maria Pedroso Yoshida, Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil.
Email: [email protected]
Search for more papers by this authorBeatriz Ewert Oliveira
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorLuana Contini
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorVitor Augusto dos Santos Garcia
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorLilian Pinheiro de Lima Cilli
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorEduardo Galvão Leite Chagas
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorMarcio Adriano Andreo
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorFernanda Maria Vanin
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorRosemary Aparecida Carvalho
Faculty of Animal Science and Food Engineering, USP- University of São Paulo, São Paulo, Brazil
Search for more papers by this authorPatricia Sinnecker
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorAnna Cecilia Venturini
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Cristiana Maria Pedroso Yoshida
Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil
Correspondence
Cristiana Maria Pedroso Yoshida, Institute of Environmental, Chemical and Pharmaceutical Science, UNIFESP - Federal São Paulo University, São Paulo, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
The objective of this study was the utilization of Isabel grape (Vitis labrusca) by-products for the development of grape pomace flour (GPF) as a new food ingredient to incorporate into a nutritional and functional pasta product adding different concentrations of GPF. The incorporation of GPF into the pasta formulation led to obtaining products with higher fiber content, lower firmness, and higher cooking loss of total solids. The antioxidant capacity of pasta samples was increased by incorporating polyphenols from GPF. The highest ORAC and FRAP results were observed in pasta containing GPF, comparing antioxidant activities. The pasta containing 50% GPF showed a good balance between high antioxidant activity and nutritional benefit with good consumer acceptability and potential to become a new functional food. Grape by-product represents a functional ingredient with low cost and a source of dietary fiber and natural antioxidants.
Novelty impact statement
- Food agro-industrial by-products such as grape pomace flour (GPF) can be a source of functional ingredients.
- Fortification of pasta with GPF increased the antioxidant capacity of cooked pasta, and it was dose-dependent.
- The incorporation of GPF into the pasta formulation led to products with higher fiber content (up to 31%) and good consumer acceptability.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The manuscript does not have shared data.
REFERENCES
- AACC. (2012). Approved methods of the assciation of cereal chemists AACC. 55121. AACC International.
- Amaral, F. P., Grazziotin, R. C. B., Machado, M. C., Hasse, L., Frata, M., Blanco, C. S., Gonçalves, F. M., Ribeiro-Filho, H. M. N., Bermudes, R. F., Del Pino, F. A. B., Corrêa, M. N., & Brauner, C. C. (2019). Limits of grape byproduct inclusion in diets for lambs: Zinc supplementation to prevent copper poisoning. Research in Veterinary Science, 124(August 2018), 334–337. https://doi.org/10.1016/j.rvsc.2019.04.005
- AOAC. (2005). Official methods of analysis of AOAC international. Association of Official Analysis Chemists International.
- Aravind, N., Sissons, M., Egan, N., Fellows, C. M., Blazek, J., & Gilbert, E. P. (2012). Effect of β-glucan on technological, sensory, and structural properties of durum wheat pasta. Cereal Chemistry, 89(2), 84–93. https://doi.org/10.1094/CCHEM-08-11-0097
- Balli, D., Cecchi, L., Innocenti, M., Bellumori, M., & Mulinacci, N. (2021). Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chemistry, 355(December 2020), 129642. https://doi.org/10.1016/j.foodchem.2021.129642
- Baydar, N. G., & Akkurt, M. (2001). Oil content and oil quality properties of some grape seeds. Turkish Journal of Agriculture and Forestry, 25(3), 163–168. https://doi.org/10.3906/tar-9909-25
10.3906/tar?9909?25 Google Scholar
- Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
- Beres, C., Simas-Tosin, F. F., Cabezudo, I., Freitas, S. P., Iacomini, M., Mellinger-Silva, C., & Cabral, L. M. C. (2016). Antioxidant dietary fibre recovery from Brazilian Pinot noir grape pomace. Food Chemistry, 201, 145–152. https://doi.org/10.1016/j.foodchem.2016.01.039
- Biernacka, B., Dziki, D., Gawlik-Dziki, U., Różyło, R., & Siastała, M. (2017). Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT - Food Science and Technology, 77, 186–192. https://doi.org/10.1016/j.lwt.2016.11.042
- BRAZIL. (2001). Agência Nacional de Vigilância Sanitária. Resolução RDC 12, de 02 de janeiro de 2001. Regulamento técnico sobre padrões microbiológicos para alimentos. Diário Oficial da União. Available at: http://www.anvisa.gov.br/legis/resol/12_01rdc.htm
- Brykova, T., Samohvalova, O., Grevtseva, N., Kasabova, K., & Grygorenko, A. (2018). The influence of grape powders on the rheological properties of dough and characteristics of the quality of butter biscuits. Food Science and Technology, 12(2), 33–38. https://doi.org/10.15673/fst.v12i2.945
- Canalejo, D., Guadalupe, Z., Martínez-Lapuente, L., Ayestarán, B., & Pérez-Magariño, S. (2021). Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chemistry, 365, 130445. https://doi.org/10.1016/j.foodchem.2021.130445
- Chillo, S., Laverse, J., Falcone, P. M., Protopapa, A., & Del Nobile, M. A. (2008). Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. Journal of Cereal Science, 47(2), 144–152. https://doi.org/10.1016/j.jcs.2007.03.004
- Choi, C.-S., Chung, H.-K., Choi, M.-K., & Kang, M.-H. (2010). Effects of grape pomace on the antioxidant defense system in diet-induced hypercholesterolemic rabbits. Nutrition Research and Practice, 4(2), 114–120. https://doi.org/10.4162/nrp.2010.4.2.114
- Cilli, L. P., Contini, L. R. F., Sinnecker, P., Lopes, P. S., Andreo, M. A., Neiva, C. R. P., Nascimento, M. S., Yoshida, C. M. P., & Venturini, A. C. (2020). Effects of grape pomace flour on quality parameters of salmon burger. Journal of Food Processing and Preservation, 44, e14329. https://doi.org/10.1111/jfpp.14329
- Compendium of Methods for the Microbiological Examination of Foods (2015). In Y. Salfinger & M. L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods. APHA. https://doi.org/10.2105/MBEF.0222
- Cruz, R. S., & Soares, N. D. F. F. (2004). Efeito da adição de CO2 nas características tecnológica e sensorial do macarrão massa fresca tipo talharim. Ciência e Agrotecnologia, 28(4), 848–855. https://doi.org/10.1590/s1413-70542004000400017
10.1590/S1413-70542004000400017 Google Scholar
- de Coelho, C. C. S., Silva, R. B. S., Carvalho, C. W. P., Rossi, A. L., Teixeira, J. A., Freitas-Silva, O., & Cabral, L. M. C. (2020). Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. International Journal of Biological Macromolecules, 159, 1048–1061. https://doi.org/10.1016/j.ijbiomac.2020.05.046
- Del Rio Osorio, L. L., Flórez-López, E., & Grande-Tovar, C. D. (2021). The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules, 26, 515. https://doi.org/10.3390/molecules26020515
- Delcour, J. A., & Hoseney, R. C. (Eds.). (2010). Principles of cereal science and technology ( 3rd ed., pp. 229–239). AACC International. https://doi.org/10.1094/9781891127632.014
10.1094/9781891127632.014 Google Scholar
- Deng, Q., Penner, M. H., & Zhao, Y. (2011). Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International, 44(9), 2712–2720. https://doi.org/10.1016/j.foodres.2011.05.026
- Dwyer, K., Hosseinian, F., & Rod, M. (2014). The market potential of grape waste alternatives. Journal of Food Research, 3(2), 91. https://doi.org/10.5539/jfr.v3n2p91
- Fares, C., Menga, V., Martina, A., Pellegrini, N., Scazzina, F., & Torriani, S. (2015). Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with β-glucan and Bacillus coagulans GBI-30, 6086. Journal of Cereal Science, 65, 260–266. https://doi.org/10.1016/j.jcs.2015.07.017
- Favari, E., Angelino, D., Cipollari, E., Adorni, M. P., Zimetti, F., Bernini, F., Ronda, N., & Pellegrini, N. (2020). Functional pasta consumption in healthy volunteers modulates ABCG1-mediated cholesterol efflux capacity of HDL. Nutrition, Metabolism and Cardiovascular Diseases, 30(10), 1768–1776. https://doi.org/10.1016/j.numecd.2020.05.002
- FDA. (2018). Code of federal regulations. Food and drugs. Food for human consumption. Title 21 ( 3rd ed.). US Government Printing Office.
- Ficco, D. B. M., De Simone, V., De Leonardis, A. M., Giovanniello, V., Del Nobile, M. A., Padalino, L., Lecce, L., Borrelli, G. M., & De Vita, P. (2016). Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chemistry, 205, 187–195. https://doi.org/10.1016/j.foodchem.2016.03.014
- Fogagnoli, G. (2014). Application of passion fruit peel powder in fresh pasta. Brazilian Journal of Food Tecnology, 17(3), 204–212 https://www.scielo.br/j/bjft/a/jmpCrmFwqM98VmVMKTRCYkk/?lang=pt
10.1590/1981-6723.0614 Google Scholar
- Food and Agriculture Organization, & International Organisation of Vine and Wine. (2016). Table and dried Fao-Oiv focus 2016. FAO, OIV.
- González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P. L. (2013). Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 61(47), 11579–11587. https://doi.org/10.1021/jf403168k
- Gülcü, M., Uslu, N., Özcan, M. M., Gökmen, F., Özcan, M. M., Banjanin, T., Gezgin, S., Dursun, N., Geçgel, Ü., Ceylan, D. A., & Lemiasheuski, V. (2019). The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. Journal of Food Processing and Preservation, 43(1), 1–14. https://doi.org/10.1111/jfpp.13850
- Han, H. M., & Koh, B.-K. (2011). Effect of phenolic acids on the rheological properties and proteins of hard wheat flour dough and bread. Journal of the Science of Food and Agriculture, 91(13), 2495–2499. https://doi.org/10.1002/jsfa.4499
- Hirawan, R., Ser, W. Y., Arntfield, S. D., & Beta, T. (2010). Antioxidant properties of commercial, regular- and whole-wheat spaghetti. Food Chemistry, 119(1), 258–264. https://doi.org/10.1016/j.foodchem.2009.06.022
- Hornedo-Ortega, R., González-Centeno, M. R., Chira, K., Jourdes, M., & Teissedre, P.-L. (2021). Phenolic compounds of grapes and wines: Key compounds and implications in sensory perception. In F. Cosme, F. Nunes, & L. Filipe-Ribeiro (Eds.), Chemistry and biochemistry of winemaking, wine stabilization and aging (pp. 1–26). IntechOpen. https://doi.org/10.5772/intechopen.87471
10.5772/intechopen.93127 Google Scholar
- Hummel, C. (1966). Macaroni products: Manufacture, processing and packing. Food Trade Press, Ltd.
- Iriondo-Dehond, M., Miguel, E., & Del Castillo, M. D. (2018). Food byproducts as sustainable ingredients for innovative and healthy dairy foods. Nutrients, 10, 1358. https://doi.org/10.3390/nu10101358
- Iuga, M., & Mironeasa, S. (2020). Potential of grape byproducts as functional ingredients in baked goods and pasta. Comprehensive Reviews in Food Science and Food Safety, 19, 2473–2505. https://doi.org/10.1111/1541-4337.12597
- Iuga, M., & Mironeasa, S. (2021). Use of grape peels by-product for wheat pasta manufacturing. Plants, 10, 926. https://doi.org/10.3390/plants10050926
- Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
- Kaur, G., Sharma, S., Nagi, H. P. S., & Dar, B. N. (2012). Functional properties of pasta enriched with variable cereal brans. Journal of Food Science and Technology, 49(4), 467–474. https://doi.org/10.1007/s13197-011-0294-3
- Krawecka, A., Sobota, A., & Sykut-Domanska, E. (2020). Physicochemical, sensory, and cooking qualities of pasta enriched with oat β-glucans, xanthan gum, and vital gluten. Food, 9, 1412. https://doi.org/10.3390/foods9101412
- Laureati, M., Conte, A., Padalino, L., Del Nobile, M. A., & Pagliarini, E. (2016). Effect of fiber information on consumer's expectation and liking of wheat bran enriched pasta. Journal of Sensory Studies, 31, 348–359. https://doi.org/10.1111/joss.12218
- Llobera, A., & Cañellas, J. (2007). Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chemistry, 101, 659–666. https://doi.org/10.1016/j.foodchem.2006.02.025
- Madadian, E., Rahimi, J., Mohebbi, M., & Simakov, D. S. A. (2022). Grape pomace as an energy source for the food industry: A thermochemical and kinetic analysis. Food and Bioproducts Processing, 132, 177–187. https://doi.org/10.1016/j.fbp.2022.01.006
- Marinelli, V., Padalino, L., Nardiello, D., Del Nobile, M. A., & Conte, A. (2015). New approach to enrich pasta with polyphenols from grape Marc. Journal of Chemistry, 2015, 734578. https://doi.org/10.1155/2015/734578
- Melini, V., Melini, F., & Acquistucci, R. (2020). Phenolic compounds and bioaccessibility thereof in functional pasta. Antioxidants, 9, 343. https://doi.org/10.3390/antiox9040343
- Menegassi, B., Leonel, M., Mischan, M. M., & Pinho, S. Z. D. (2007). Efeito de parâmetros de extrusão na cor E propriedades de pasta da farinha de mandioquinha-salsa (Arracacia xanthorrhiza). Ciência e Agrotecnologia, 31(6), 1780–1792. https://doi.org/10.1590/S1413-70542007000600027
10.1590/S1413-70542007000600027 Google Scholar
- Mercier, S., Moresoli, C., Mondor, M., Villeneuve, S., & Marcos, B. (2016). A meta-analysis of enriched pasta: What are the effects of enrichment and process specifications on the quality attributes of pasta? Comprehensive Reviews in Food Science and Food Safety, 15, 685–704. https://doi.org/10.1111/1541-4337.12207
- Mironeasa, S., Leahu, A., & Codin, G. (2010). Grape seed: Physico-chemical, structural characteristics and oil content. Journal of Agroalimentary Processes and Technologies, 16(1), 1–6.
- Muhlack, R. A., Potumarthi, R., & Jeffery, D. W. (2018). Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Management, 72, 99–118. https://doi.org/10.1016/j.wasman.2017.11.011
- NEPA - Núcleo de Estudos e Pesquisas em Alimentação. (2011). Tabela brasileira de composição de alimentos. NEPA – Unicamp, 3, 125–129. https://doi.org/10.1007/s10298-005-0086-x
10.1007/s10298?005?0086?x Google Scholar
- Nouviaire, A., Lancien, R., & Maache-Rezzoug, Z. (2008). Influence of hydrothermal treatment on rheological and cooking characteristics of fresh egg pasta. Journal of Cereal Science, 47, 283–291. https://doi.org/10.1016/j.jcs.2007.04.014
- Oliveira, M. M. D., Lago, A., & Dal'Magro, G. P. (2021). Food loss and waste in the context of the circular economy: a systematic review. Journal of Cleaner Production, 294, 126284. https://doi.org/10.1016/j.jclepro.2021.126284
- Oliviero, T., & Fogliano, V. (2016). Food design strategies to increase vegetable intake: The case of vegetable enriched pasta. Trends in Food Science and Technology, 51, 58–64. https://doi.org/10.1016/j.tifs.2016.03.008
- Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49, 4619–4626. https://doi.org/10.1021/jf010586o
- Padalino, L., Conte, A., Lecce, L., Likyova, D., Sicari, V., Pellicanò, T., Poiana, M., & Del Nobile, M. (2017). Functional pasta with tomato by-product as a source of antioxidant compounds and dietary fibre. Czech Journal of Food Sciences, 35(1), 48–56. doi:10.17221/171/2016-CJFS
- Paucar-Menacho, L. M., da Silva, L. H., de Barretto, P. A. A., Mazal, G., Fakhouri, F. M., Steel, C. J., & Collares-Queiroz, F. P. (2008). Desenvolvimento de massa alimentícia fresca funcional com a adição de isolado protéico de soja e polidextrose utilizando páprica como corante. Ciência e Tecnologia de Alimentos, 28(4), 767–778. https://doi.org/10.1590/s0101-20612008000400002
10.1590/S0101-20612008000400002 Google Scholar
- Pedrali, D., Barbarito, S., & Lavelli, V. (2020). Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads – Impact of food matrix and processing on the inhibitory activity towards α-glucosidase. LWT, 133, 109952. https://doi.org/10.1016/j.lwt.2020.109952
- Pérez-Jiménez, J., Serrano, J., Tabernero, M., Arranz, S., Díaz-Rubio, M. E., García-Diz, L., Goñi, I., & Saura-Calixto, F. (2008). Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition, 24, 646–653. https://doi.org/10.1016/j.nut.2008.03.012
- Podio, N. S., Baroni, M. V., Pérez, G. T., & Wunderlin, D. A. (2019). Assessment of bioactive compounds and their in vitro bioaccessibility in whole-wheat flour pasta. Food Chemistry, 293, 408–417. https://doi.org/10.1016/j.foodchem.2019.04.117
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Resmini, P., & Pagani, M. A. (1983). Ultrastructure studies of pasta. A review. Food structure, 2(1), Article 2 Available at: https://digitalcommons.usu.edu/foodmicrostructure/vol2/iss1/2
- Rosales Soto, M. U., Brown, K., & Ross, C. F. (2012). Antioxidant activity and consumer acceptance of grape seed flour-containing food products. International Journal of Food Science and Technology, 47, 592–602. https://doi.org/10.1111/j.1365-2621.2011.02882.x
- Rubio, F. T. V., Maciel, G. M., da Silva, M. V., Corrêa, V. G., Peralta, R. M., & Haminiuk, C. W. I. (2018). Enrichment of waste yeast with bioactive compounds from grape pomace as an innovative and emerging technology: Kinetics, isotherms and bioaccessibility. Innovative Food Science and Emerging Technologies, 45, 18–28. https://doi.org/10.1016/j.ifset.2017.09.004
- Sant'Anna, V., Brandelli, A., Marczak, L. D. F., & Tessaro, I. C. (2012). Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, 100, 82–87. https://doi.org/10.1016/j.seppur.2012.09.004
- Sant'Anna, V., Christiano, F. D. P., Marczak, L. D. F., Tessaro, I. C., & Thys, R. C. S. (2014). The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT - Food Science and Technology, 58(2), 497–501. https://doi.org/10.1016/j.lwt.2014.04.008
- Sato, R., Cilli, L. P. L., de Oliveira, B. E., Maciel, V. B. V., Venturini, A. C., & Yoshida, C. M. P. (2019). Nutritional improvement of pasta with Pereskia aculeata miller: A non-conventional edible vegetable. Food Science and Technology, 39, 28–34. https://doi.org/10.1590/fst.35617
- Seczyk, Ł., Świeca, M., & Gawlik-Dziki, U. (2015). Changes of antioxidant potential of pasta fortified with parsley (Petroselinum crispum Mill.) Leaves in the light of protein-phenolics interactions. Acta Scientiarum Polonorum, Technologia Alimentaria, 14(1), 29–36. https://doi.org/10.17306/J.AFS.2015.1.3
- Silveira Rodríguez, M. B., Monereo Megías, S., & Molina Baena, B. (2003). Alimentos funcionales y nutrición óptima. ¿Cerca o lejos? Revista Espanola de Salud Publica, 77, 317–331. https://doi.org/10.1590/s1135-57272003000300003
- Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
- Sousa, E. C., Uchôa-Thomaz, A. M. A., Carioca, J. O. B., de Morais, S. M., de Lima, A., Martins, C. G., Alexandrino, C. D., Ferreira, P. A. T., Rodrigues, A. L. M., Rodrigues, S. P., Silva, J. D. N., & Rodrigues, L. L. (2014). Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Science and Technology, 34(1), 135–142. https://doi.org/10.1590/S0101-20612014000100020
- Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D. A., & Garcia-Viguera, C. (2014). Natural bioactive compounds from winery by-products as health promoters: A review. International Journal of Molecular Sciences, 15, 15638–15678. https://doi.org/10.3390/ijms150915638
- Wahanik, A. L., Chang, Y. K., & Clerici, M. T. P. S. (2018). How to make pastas healthier? Food Reviews International, 34(1), 52–69. https://doi.org/10.1080/87559129.2016.1210634
- Wang, X., Liang, J., Wen, H., Shan, C., & Liu, R. (2014). Qualitative and quantitative analyses of bioactive secolignans from folk medicinal plant Peperomia dindygulensis using UHPLC-UV/Q-TOF-MS. Journal of Pharmaceutical and Biomedical Analysis, 94, 1–11. https://doi.org/10.1016/j.jpba.2014.01.024
- Xu, J., Wang, W., & Li, Y. (2019). Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. Journal of Functional Foods, 52, 629–639. https://doi.org/10.1016/j.jff.2018.11.052
- Yu, J., & Ahmedna, M. (2013). Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science and Technology, 48(2), 221–237. https://doi.org/10.1111/j.1365-2621.2012.03197.x
- Zhu, F., Sakulnak, R., & Wang, S. (2016). Effect of black tea on antioxidant, textural, and sensory properties of Chinese steamed bread. Food Chemistry, 194, 1217–1223. https://doi.org/10.1016/j.foodchem.2015.08.110