Effect of sucrose on the extrusion of varied whole sorghum grits genotypes
Nathália Ferreira Collantes
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Search for more papers by this authorCarlos Wanderlei Piler Carvalho
Food Extrusion and Physical Properties Lab, Embrapa Agroindústria de Alimentos, Avenida das Américas, Rio de Janeiro, Brazil
Search for more papers by this authorJosé Luis Ramírez Ascheri
Food Extrusion and Physical Properties Lab, Embrapa Agroindústria de Alimentos, Avenida das Américas, Rio de Janeiro, Brazil
Search for more papers by this authorDavy William Hidalgo Chávez
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Search for more papers by this authorCorresponding Author
Raúl Comettant-Rabanal
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Escuela Profesional de Ingeniería Agroindustrial, Facultad de Ingenierías, Universidad Privada San Juan Bautista, Ica, Peru
Correspondence
Raúl Comettant-Rabanal, Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, 23890-000 Seropédica, RJ - Brazil.
Email: [email protected]; [email protected]
Search for more papers by this authorCristiany Oliveira Bernardo
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Search for more papers by this authorValéria Aparecida Vieira Queiroz
Embrapa Milho e Sorgo, Sete Lagoas, Brazil
Search for more papers by this authorNathália Ferreira Collantes
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Search for more papers by this authorCarlos Wanderlei Piler Carvalho
Food Extrusion and Physical Properties Lab, Embrapa Agroindústria de Alimentos, Avenida das Américas, Rio de Janeiro, Brazil
Search for more papers by this authorJosé Luis Ramírez Ascheri
Food Extrusion and Physical Properties Lab, Embrapa Agroindústria de Alimentos, Avenida das Américas, Rio de Janeiro, Brazil
Search for more papers by this authorDavy William Hidalgo Chávez
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Search for more papers by this authorCorresponding Author
Raúl Comettant-Rabanal
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Escuela Profesional de Ingeniería Agroindustrial, Facultad de Ingenierías, Universidad Privada San Juan Bautista, Ica, Peru
Correspondence
Raúl Comettant-Rabanal, Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, 23890-000 Seropédica, RJ - Brazil.
Email: [email protected]; [email protected]
Search for more papers by this authorCristiany Oliveira Bernardo
Postgraduate Program in Food Science and Technology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
Search for more papers by this authorValéria Aparecida Vieira Queiroz
Embrapa Milho e Sorgo, Sete Lagoas, Brazil
Search for more papers by this authorAbstract
The effect of sucrose on the extrusion of varied whole sorghum genotypes was studied using a single-screw system. The raw sorghum flours were characterized in terms of chemical composition and particle size. Specific mechanical energy (SME) was measured as a process parameter, as well as expansion properties, hydration, paste viscosity, instrumental color, and texture, along with total phenolic compounds (TPC) and total condensed tannins (TCT) in the puffed extrudates. In general, the addition of 10% sucrose reduced SME (p < .05), sectional expansion, hydration, and cold paste viscosity, indicating lower starch conversion and increased lightness (L*) and hardness (Fc). In contrast, BRS 501 showed opposite results for most of the variables measured, due to the suppression of the lubricant effect attributed to the high lipid in this genotype. Furthermore, the extrusion process at 0% sucrose released TPC values by 71.2% and 317.5% for low-tannin extrudates, while the addition of sucrose (10%) did not alter the TPC (p > .05) and had a protective effect on TCT retention in BRS 305 genotype extrudates.
Practical applications
The worldwide food intake of non-traditional whole grains such as sorghum has been restricted. Although it has been recently considered as an interesting an attractive gluten-free cereal due to its high and varied content of phytochemicals that provide health benefits and dietary fiber source. To take advantage of its potential, thermoplastic extrusion technology was used as a tool to develop textured sorghum expanded products with improved digestibility and retention of bioactive compounds. On the other hand, in order to improve its potential use as sweet snacks, the addition of sugar concentrations (10%) was added to improve its palatability, allowing to obtain expanded extrudates rich in fiber and bioactive compounds with improved taste compared to conventional extrudates, which would be of interest of the consumer and the food industries.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The authors accept and declare the disposition of the data of our research work.
REFERENCES
- Alvarez-Martinez, L., Kondury, K. P., & Harper, J. M. (1988). A general model for expansion of extruded products. Journal of Food Science, 53(2), 609–615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x
- AOAC. (2000). Official methods of analysis ( 16th ed.). AOAC International.
- Barrett, A., Kaletunç, G., Rosenburg, S., & Breslauer, K. (1995). Effect of sucrose on the structure, mechanical strength and thermal properties of corn extrudates. Carbohydrate Polymers, 26(4), 261–269. https://doi.org/10.1016/0144-8617(95)00024-2
- Bouvier, J., Bonneville, R., & Goullieux, A. (1997). Instrumental methods for the measurement of extrudate crispness. Agro Food Industry Hi-Tech, 8(1), 16–19.
- Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
- Brennan, M. A., Monro, J. A., & Brennan, C. S. (2008). Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration. International Journal of Food Science & Technology, 43(12), 2278–2288. https://doi.org/10.1111/j.1365-2621.2008.01867.x
- Buitimea-Cantúa, N. E., Torres-Chávez, P. I., Ramírez-Wong, B., Serna-Saldívar, S. O., Rouzaud-Sández, O., Rosas-Burgos, E. C., Platt-Lucero, L. C., & Salazar-García, M. G. (2017). Phenolic compounds and antioxidant activity of extruded nixtamalized corn flour and tortillas enriched with sorghum bran. Cereal Chemistry, 94(2), 277–283. https://doi.org/10.1094/CCHEM-04-16-0115-R
- Campelo, F. A., Henriques, G. S., Simeone, M. L. F., Queiroz, V. A. V., Silva, M. R., Augusti, R., Melo, J. O., Lacerda, I. C., & Araújo, R. L. B. (2020). Study of thermoplastic extrusion and its impact on the chemical and nutritional characteristics and two sorghum genotypes SC 319 and BRS 332. Journal of the Brazilian Chemical Society, 31(4), 788–802. https://doi.org/10.21577/0103-5053.20190243
- Cardoso, L. D. M., Pinheiro, S. S., de Carvalho, C. W. P., Queiroz, V. A. V., de Menezes, C. B., Moreira, A. V. B., de Barros, F. A. R., Awika, J. M., Martino, H. S. D., & Pinheiro-Sant'Ana, H. M. (2015). Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. Journal of Cereal Science, 65, 220–226. https://doi.org/10.1016/j.jcs.2015.06.015
- Carvalho, C. W. P., & Mitchell, J. R. (2000). Effect of sugar on the extrusion of maize grits and wheat flour. International Journal of Food Science & Technology, 35(6), 569–576. https://doi.org/10.1111/j.1365-2621.2000.00454.x
- Carvalho, C. W. P., Takeiti, C. Y., Onwulata, C. I., & Pordesimo, L. O. (2010). Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. Journal of Food Engineering, 98(1), 103–109. https://doi.org/10.1016/j.jfoodeng.2009.12.015
- Chao-Chi Chuang, G., & Yeh, A.-I. (2004). Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking. Journal of Food Engineering, 63(1), 21–31. https://doi.org/10.1016/S0260-8774(03)00278-4
- Chávez, D. W. H., Ascheri, J. L. R., Carvalho, C. W. P., Bernardo, C. O., Deliza, R., Freitas-Sá, D. D. G. C., Teles, A. S. C., & Queiroz, V. A. V. (2021). Physicochemical properties, characteristics, and consumer acceptance of whole grain sorghum expanded extrudates. Journal of Food Processing and Preservation, 45(10), e15837. https://doi.org/10.1111/jfpp.15837
- Chávez, D. W. H., Ascheri, J. L. R., Carvalho, C. W. P., Godoy, R. L. O., & Pacheco, S. (2017). Sorghum and roasted coffee blends as a novel extruded product: Bioactive compounds and antioxidant capacity. Journal of Functional Foods, 29, 93–103. https://doi.org/10.1016/j.jff.2016.12.012
- Comettant-Rabanal, R., Carvalho, C. W. P., Ascheri, J. L. R., Chávez, D. W. H., & Germani, R. (2021). Extruded whole grain flours and sprout millet as functional ingredients for gluten-free bread. LWT, 150, 112042. https://doi.org/10.1016/j.lwt.2021.112042
- D'Almeida, C. T. D. S., Mameri, H., Menezes, N. D. S., de Carvalho, C. W. P., Queiroz, V. A. V., Cameron, L. C., Morel, M. H., Takeiti, C. Y., & Ferreira, M. S. L. (2021). Effect of extrusion and turmeric addition on phenolic compounds and kafirin properties in tannin and tannin-free sorghum. Food Research International, 149, 110663. https://doi.org/10.1016/j.foodres.2021.110663
- Dlamini, N. R., Taylor, J. R. N., & Rooney, L. W. (2007). The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chemistry, 105(4), 1412–1419. https://doi.org/10.1016/j.foodchem.2007.05.017
- Duodu, K. G., Nunes, A., Delgadillo, I., Parker, M. L., Mills, E. N. C., Belton, P. S., & Taylor, J. R. N. (2002). Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. Journal of Cereal Science, 35(2), 161–174. https://doi.org/10.1006/jcrs.2001.0411
- Dykes, L. (2019). Sorghum phytochemicals and their potential impact on human health. In D. J. Zhao (Ed.), Sorghum (Vol. 1931, pp. 121–140). Humana Press.
10.1007/978-1-4939-9039-9_9 Google Scholar
- Dykes, L., Rooney, L. W., Waniska, R. D., & Rooney, W. L. (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry, 53(17), 6813–6818. https://doi.org/10.1021/jf050419e
- Dykes, L., Rooney, W. L., & Rooney, L. W. (2013). Evaluation of phenolics and antioxidant activity of black sorghum hybrids. Journal of Cereal Science, 58(2), 278–283. https://doi.org/10.1016/j.jcs.2013.06.006
- Fan, J., Mitchell, J. R., & Blanshard, J. M. V. (1996). The effect of sugars on the extrusion of maize grits: I. The role of the glass transition in determining product density and shape. International Journal of Food Science & Technology, 31(1), 55–65. https://doi.org/10.1111/j.1365-2621.1996.22-317.x
- Farhat, I. A., Mousia, Z., & Mitchell, J. R. (2003). Structure and thermomechanical properties of extruded amylopectin–sucrose systems. Carbohydrate Polymers, 52(1), 29–37. https://doi.org/10.1016/S0144-8617(02)00262-X
- Ganjyal, G. M. (2020). Extrusion cooking: Cereal grains processing. Woodhead Publishing.
- Gaytán-Martínez, M., Cabrera-Ramírez, Á. H., Morales-Sánchez, E., Ramírez-Jiménez, A. K., Cruz-Ramírez, J., Campos-Vega, R., Velazquez, G., Loarca-Piña, G., & Mendoza, S. (2017). Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science, 77, 1–8. https://doi.org/10.1016/j.jcs.2017.06.014
- Guerrero, P., Beatty, E., Kerry, J. P., & de la Caba, K. (2012). Extrusion of soy protein with gelatin and sugars at low moisture content. Journal of Food Engineering, 110(1), 53–59. https://doi.org/10.1016/j.jfoodeng.2011.12.009
- Guillermic, R. M., Aksoy, E. C., Aritan, S., Erkinbaev, C., Paliwal, J., & Koksel, F. (2021). X-ray microtomography imaging of red lentil puffed snacks: Processing conditions, microstructure and texture. Food Research International, 140, 109996. https://doi.org/10.1016/j.foodres.2020.109996
- Gulati, P., Brahma, S., & Rose, D. J. (2020). Chapter 13 - impacts of extrusion processing on nutritional components in cereals and legumes: Carbohydrates, proteins, lipids, vitamins, and minerals. In G. M. Ganjyal (Ed.), Extrusion cooking (pp. 415–443). Woodhead Publishing.
10.1016/B978-0-12-815360-4.00013-4 Google Scholar
- Gulati, P., Weier, S. A., Santra, D., Subbiah, J., & Rose, D. J. (2016). Effects of feed moisture and extruder screw speed and temperature on physical characteristics and antioxidant activity of extruded proso millet (Panicum miliaceum) flour. International Journal of Food Science & Technology, 51(1), 114–122. https://doi.org/10.1111/ijfs.12974
- Guo, W., & Beta, T. (2013). Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Food Research International, 51(2), 518–525. https://doi.org/10.1016/j.foodres.2013.01.008
- Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43(1), 38–46. https://doi.org/10.1016/j.jcs.2005.09.003
- Hsieh, F., Peng, I. C., & Huff, H. E. (1990). Effects of salt, sugar and screw speed on processing and product variables of corn meal extruded with a twin-screw extruder. Journal of Food Science, 55(1), 224–227. https://doi.org/10.1111/j.1365-2621.1990.tb06057.x
- Jafari, M., Koocheki, A., & Milani, E. (2017). Effect of extrusion cooking on chemical structure, morphology, crystallinity and thermal properties of sorghum flour extrudates. Journal of Cereal Science, 75, 324–331. https://doi.org/10.1016/j.jcs.2017.05.005
- Jin, Z., Hsieh, F., & Huff, H. E. (1995). Effects of soy fiber, salt, sugar and screw speed on physical properties and microstructure of corn meal extrudate. Journal of Cereal Science, 22(2), 185–194. https://doi.org/10.1016/0733-5210(95)90049-7
- Leoro, M. G. V., Clerici, M. T. P. S., Chang, Y. K., & Steel, C. J. (2010). Evaluation of the in vitro glycemic index of a fiber-rich extruded breakfast cereal produced with organic passion fruit fiber and corn flour. Food Science and Technology International, 30(4), 964–968. https://doi.org/10.1590/S0101-20612010000400019
10.1590/S0101-20612010000400019 Google Scholar
- Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Cabrera-Ramírez, Á. H., Rodríguez-Castillo, N., Campos-Vega, R., Loarca-Piña, G., & Gaytán-Martínez, M. (2020). Impact of cooking and nixtamalization on the bioaccessibility and antioxidant capacity of phenolic compounds from two sorghum varieties. Food Chemistry, 309, 125684. https://doi.org/10.1016/j.foodchem.2019.125684
- Marriott, B. P., Birt, D. F., Stallings, V. A., & Yates, A. A. (2020). Present knowledge in nutrition: Clinical and applied topics in nutrition. Academic Press.
- Masli, M. D. P., Gu, B.-J., Rasco, B. A., & Ganjyal, G. M. (2018). Fiber-rich food processing byproducts enhance the expansion of cornstarch extrudates. Journal of Food Science, 83(10), 2500–2510. https://doi.org/10.1111/1750-3841.14290
- Mezreb, K., Goullieux, A., Ralainirina, R., & Queneudec, M. (2006). Effect of sucrose on the textural properties of corn and wheat extrudates. Carbohydrate Polymers, 64(1), 1–8. https://doi.org/10.1016/j.carbpol.2005.09.007
- Moore, D., Sanei, A., Van Hecke, E., & Bouvier, J. M. (1990). Effect of ingredients on physical/structural properties of extrudates. Journal of Food Science, 55(5), 1383–1387. https://doi.org/10.1111/j.1365-2621.1990.tb03942.x
- Nascimento, T. A., Calado, V., & Carvalho, C. W. P. (2017). Effect of Brewer's spent grain and temperature on physical properties of expanded extrudates from rice. LWT - Food Science and Technology, 79, 145–151. https://doi.org/10.1016/j.lwt.2017.01.035
- Oliveira, L. C., Alencar, N. M. M., & Steel, C. J. (2018). Improvement of sensorial and technological characteristics of extruded breakfast cereals enriched with whole grain wheat flour and jabuticaba (Myrciaria cauliflora) peel. LWT, 90, 207–214. https://doi.org/10.1016/j.lwt.2017.12.017
- Oliveira, L. C., Barros, J. H. T., Rosell, C. M., & Steel, C. J. (2017). Physical and thermal properties and X-ray diffraction of corn flour systems as affected by whole grain wheat flour and extrusion conditions. Starch-Starke, 69(9–10), 1–11. https://doi.org/10.1002/star.201600299
- Pitts, K. F., Favaro, J., Austin, P., & Day, L. (2014). Co-effect of salt and sugar on extrusion processing, rheology, structure and fracture mechanical properties of wheat–corn blend. Journal of Food Engineering, 127, 58–66. https://doi.org/10.1016/j.jfoodeng.2013.11.026
- Robin, F., Théoduloz, C., & Srichuwong, S. (2015). Properties of extruded whole grain cereals and pseudocereals flours. International Journal of Food Science & Technology, 50(10), 2152–2159. https://doi.org/10.1111/ijfs.12893
- Sasanam, S., Rungsardthong, V., Thumthanaruk, B., Wijuntamook, S., Rattananupap, V., Vatanyoopaisarn, S., Puttanlek, C., Uttapap, D., & Mussatto, S. I. (2021). Properties and volatile profile of process flavorings prepared from d-xylose with glycine, alanine or valine by direct extrusion method. Food Bioscience, 44, 101371. https://doi.org/10.1016/j.fbio.2021.101371
- Saura-Calixto, F., & Goñi, I. (2006). Antioxidant capacity of the Spanish Mediterranean diet. Food Chemistry, 94(3), 442–447. https://doi.org/10.1016/j.foodchem.2004.11.033
- Toledo, V. C. S., Carvalho, C. W. P., Vargas-Solórzano, J. W., Ascheri, J. L. R., & Comettant-Rabanal, R. (2020). Extrusion cooking of gluten-free whole grain flour blends. Journal of Food Process Engineering, 43(2), e13303. https://doi.org/10.1111/jfpe.13303
- Vallés Pamies, B., Roudaut, G., Dacremont, C., Meste, M. L., & Mitchell, J. R. (2000). Understanding the texture of low moisture cereal products: Mechanical and sensory measurements of crispness. Journal of the Science of Food and Agriculture, 80(11), 1679–1685. https://doi.org/10.1002/1097-0010(20000901)80:11<1679::AID-JSFA697>3.0.CO;2-P
- van Zuilichem, D. J., Stolp, W., & Janssen, L. P. B. M. (1983). Engineering aspects of single- and twin-screw extrusion-cooking of biopolymers. Journal of Food Engineering, 2(3), 157–175. https://doi.org/10.1016/0260-8774(83)90008-0
10.1016/0260-8774(83)90008-0 Google Scholar
- Vargas-Solórzano, J. W., Carvalho, C. W. P., Takeiti, C. Y., Ascheri, J. L. R., & Queiroz, V. A. V. (2014). Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research International, 55, 37–44. https://doi.org/10.1016/j.foodres.2013.10.023