Preliminary study of novel autochthonous starter culture for red wine production with reduced biogenic amine content
Giovanni Rubilar
Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
Search for more papers by this authorGiuseppe Spano
Laboratory of Industrial Microbiology, Department of Agriculture, Food and Environmental Sciences, University of Foggia, Foggia, Italy
Search for more papers by this authorPedro Aqueveque
Laboratory of Microbiology and Mycology Applied, Department of Agroindustries, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile
Search for more papers by this authorCorresponding Author
Mario Aranda
Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
Correspondence
Mario Aranda, Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile.
Email: [email protected]
Karem Henriquez-Aedo, Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Karem Henriquez-Aedo
Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
Correspondence
Mario Aranda, Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile.
Email: [email protected]
Karem Henriquez-Aedo, Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.
Email: [email protected]
Search for more papers by this authorGiovanni Rubilar
Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
Search for more papers by this authorGiuseppe Spano
Laboratory of Industrial Microbiology, Department of Agriculture, Food and Environmental Sciences, University of Foggia, Foggia, Italy
Search for more papers by this authorPedro Aqueveque
Laboratory of Microbiology and Mycology Applied, Department of Agroindustries, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile
Search for more papers by this authorCorresponding Author
Mario Aranda
Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
Correspondence
Mario Aranda, Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile.
Email: [email protected]
Karem Henriquez-Aedo, Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Karem Henriquez-Aedo
Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
Correspondence
Mario Aranda, Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile.
Email: [email protected]
Karem Henriquez-Aedo, Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.
Email: [email protected]
Search for more papers by this authorAbstract
Most Chilean red wine is produced by spontaneous malolactic fermentation (MLF), which generates prolonged fermentations resulting in uncertain results, increase production cost, and lead to biogenic amine (BA) formation. The objective of this work was to carry out a preliminary study of an autochthonous MLF starter culture to perform shorter and controlled MLF to elaborated red wines with low BA content. The autochthonous Oenococcus oeni strain (OoB6) isolated from spontaneous MLF was assayed in bioreactors using filtered and unfiltered wines. OoB6 strain efficiently carried out MLF samples showing a similar performance to commercial starter culture. Both accomplished malic acid concentrations (<0.12 g/L) significantly lower (p < .05) than the initial content (1.21 ± 0.11 g/L). OoB6 strain produced a 50% reduction in MLF time and showed very low BA formation (ca. 5 mg/L) without detecting the presence toxicological important BA histamine and tyramine.
Novelty impact statement
- To the best of our knowledge, this work report for the first time a preliminary study of potential autochthonous MLF starter culture to elaborate Chilean red wines.
- Autochthonous MLF starter culture produced a 50% reduction in MLF time compared with traditional spontaneous MLF.
- Autochthonous MLF starter culture showed very low BA formation (ca. 5 mg/L) without detecting the presence toxicological important BA histamine and tyramine.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
jfpp17187-sup-0001-Supinfo.docxWord 2007 document , 521.5 KB |
Figure S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ancin-Azpilicueta, C., Gonzalez-Marco, A., & Jimenez-Moreno, N. (2008). Current knowledge about the presence of amines in wine. Critical Reviews in Food Science and Nutrition, 48(3), 257–275. https://doi.org/10.1080/10408390701289441
- Angulo, M. F., Flores, M., Aranda, M., & Henriquez-Aedo, K. (2020). Fast and selective method for biogenic amines determination in wines and beers by ultra high-performance liquid chromatography. Food Chemistry, 309, 125689. https://doi.org/10.1016/j.foodchem.2019.125689
- Anli, R. E., & Bayram, M. (2009). Biogenic amines in wines. Food Reviews International, 25(1), 86–102. https://doi.org/10.1080/87559120802458552
- Battistelli, N., Perpetuini, G., Perla, C., Arfelli, G., Zulli, C., Rossetti, A. P., & Tofalo, R. (2020). Characterization of natural Oenococcus oeni strains for Montepulciano d'Abruzzo organic wine production. European Food Research and Technology, 246(5), 1031–1039. https://doi.org/10.1007/s00217-020-03466-3
- Beneduce, L., Romano, A., Capozzi, V., Lucas, P., Barnavon, L., Bach, B., Vuchot, P., Grieco, F., & Spano, G. (2010). Biogenic amine in wines. Annals of Microbiology, 60(4), 573–578. https://doi.org/10.1007/s13213-010-0094-4
- Berbegal, C., Benavent-Gil, Y., Navascues, E., Calvo, A., Albors, C., Pardo, I., & Ferrer, S. (2017). Lowering histamine formation in a red Ribera del Duero wine (Spain) by using an indigenous O.oeni strain as a malolactic starter. International Journal of Food Microbiology, 244, 11–18. https://doi.org/10.1016/j.ijfoodmicro.2016.12.013
- Berbegal, C., Benavent-Gil, Y., Pardo, I., & Ferrer, S. (2015). A novel culture medium for Oenococcus oeni malolactic starter production. LWT-Food Science and Technology, 64(1), 25–31. https://doi.org/10.1016/j.lwt.2015.05.020
- Berbegal, C., Peña, N., Russo, P., Grieco, F., Pardo, I., Ferrer, S., Spano, G., & Capozzi, V. (2016). Technological properties of lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiology, 57, 187–194. https://doi.org/10.1016/j.fm.2016.03.002
- Bover-Cid, S., Iquierdo-Pulido, M., Marine-Font, A., & Vidal-Carou, M. C. (2006). Biogenic mono-, di- and polyamine contents in Spanish wines and influence of a limited irrigation. Food Chemistry, 96(1), 43–47. https://doi.org/10.1016/j.foodchem.2005.01.054
- Bravo-Ferrada, B. M., Hollmann, A., Brizuela, N., La Hens, D. V., Tymczyszyn, E., & Semorile, L. (2016). Growth and consumption of l-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains. Folia Microbiologica, 61(5), 365–373. https://doi.org/10.1007/s12223-016-0446-y
- Bravo-Ferrada, B. M., Hollmann, A., Delfederico, L., La Hens, D. V., Caballero, A., & Semorile, L. (2013). Patagonian red wines: Selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation. World Journal of Microbiology & Biotechnology, 29(9), 1537–1549. https://doi.org/10.1007/s11274-013-1337-x
- Čanak, I., Markov, K., Melvan, E., Starčević, A., Živković, M., Zadravec, M., Pleadin, J., Jakopović, Ž., Kostelac, D., & Frece, J. (2018). Isolation and characterisation of L. plantarum O1 producer of plantaricin as potential starter culture for the biopreservation of aquatic food products. Food Technology and Biotechnology, 56(4), 581–589. https://doi.org/10.17113/ftb.56.04.18.5707
- Canas, P. M. I., Perez-Martin, F., Romero, E. G., Prieto, S. S., & Herreros, M. D. P. (2012). Influence of inoculation time of an autochthonous selected malolactic bacterium on volatile and sensory profile of Tempranillo and merlot wines. International Journal of Food Microbiology, 156(3), 245–254. https://doi.org/10.1016/j.ijfoodmicro.2012.03.033
- Costantini, A., Cersosimo, M., Prete, V., & Garcia-moruno, E. (2006). Production of biogenic amines by lactic acid bacteria: Screening by PCR, thin-layer chromatography, and high-performance liquid chromatography of strains isolated from wine and must. Journal of Food Protection, 69(2), 391–396. https://doi.org/10.4315/0362-028x-69.2.391
- Coton, E., Rollan, G., Bertrand, A., & Lonvaud-Funel, A. (1998). Histamine-producing lactic acid bacteria in wines: Early detection, frequency, and distribution. American Journal of Enology and Viticulture, 49(2), 199–204.
- de las Rivas, B., Marcobal, A., & Munoz, R. (2004). Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Applied and Environmental Microbiology, 70(12), 7210–7219. https://doi.org/10.1128/aem.70.12.7210-7219.2004
- Dimopoulou, M., Raffenne, J., Claisse, O., Miot-Sertier, C., Iturmendi, N., Moine, V., Coulon, J., & Dols-Lafargue, M. (2018). Oenococcus oeni exopolysaccharide biosynthesis, a tool to improve malolactic starter performance. Frontiers in Microbiology, 9(1276), 1–14. https://doi.org/10.3389/fmicb.2018.01276
- du Toit, M., Engelbrecht, L., Lerm, E., & Krieger-Weber, S. (2011). Lactobacillus: The next generation of malolactic fermentation starter cultures-an overview. Food and Bioprocess Technology, 4(6), 876–906. https://doi.org/10.1007/s11947-010-0448-8
- Grandvalet, C., Assad-Garcia, J. S., Chu-Ky, S., Tollot, M., Guzzo, J., Gresti, J., & Tourdot-Marechal, R. (2008). Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: Characterization of the cfa gene by heterologous complementation. Microbiology-Sgm, 154, 2611–2619. https://doi.org/10.1099/mic.0.2007/016238-0
- Guerrini, S., Bastianini, A., Blaiotta, G., Granchi, L., Moschetti, G., Coppola, S., Romano, P., & Vincenzini, M. (2003). Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. International Journal of Food Microbiology, 83(1), 1–14. https://doi.org/10.1016/S0168-1605(02)00323-9
- Guerrini, S., Mangani, S., Granchi, L., & Vincenzini, M. (2002). Biogenic amine production by Oenococcus oeni. Current Microbiology, 44(5), 374–378. https://doi.org/10.1007/s00284-001-0021-9
- Guo, Y. Y., Yang, Y. P., Peng, Q., & Han, Y. (2015). Biogenic amines in wine: A review. International Journal of Food Science and Technology, 50(7), 1523–1532. https://doi.org/10.1111/ijfs.12833
- Henríquez-Aedo, K., Durán, D., Garcia, A., Hengst, M. B., & Aranda, M. (2016). Identification of biogenic amines-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of chilean red wines. LWT - Food Science and Technology, 68, 183–189. https://doi.org/10.1016/j.lwt.2015.12.003
- Henríquez-Aedo, K., Galarce-Bustos, O., Aqueveque, P., García, A., & Aranda, M. (2018). Dynamic of biogenic amines and precursor amino acids during cabernet sauvignon vinification. LWT - Food Science and Technology, 97, 238–244. https://doi.org/10.1016/j.lwt.2018.06.029
- Henríquez-Aedo, K., Vega, M., Prieto-Rodríguez, S., & Aranda, M. (2012). Evaluation of biogenic amines content in chilean reserve varietal wines. Food and Chemical Toxicology, 50(8), 2742–2750. https://doi.org/10.1016/j.fct.2012.05.034
- Iorizzo, M., Testa, B., Lombardi, S. J., García-Ruiz, A., Muñoz-González, C., Bartolomé, B., & Moreno-Arribas, M. V. (2016). Selection and technological potential of lactobacillus plantarum bacteria suitable for wine malolactic fermentation and grape aroma release. LWT - Food Science and Technology, 73, 557–566. https://doi.org/10.1016/j.lwt.2016.06.062
- Landete, J. M., Ferrer, S., & Pardo, I. (2007). Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control, 18(12), 1569–1574. https://doi.org/10.1016/j.foodcont.2006.12.008
- Leitao, M. C., Marques, A. P., & San Romao, M. V. (2005). A survey of biogenic amines in commercial Portuguese wines. Food Control, 16(3), 199–204. https://doi.org/10.1016/j.foodcont.2004.01.012
- Linares, D. M., del Rio, B., Redruello, B., Ladero, V., Martin, M. C., Fernandez, M., Ruas-Madiedo, P., & Alvarez, M. A. (2016). Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 197(Pt A), 658–663. https://doi.org/10.1016/j.foodchem.2015.11.013
- Lopez, R., Lopez-Alfaro, I., Gutierrez, A. R., Tenorio, C., Garijo, P., Gonzalez-Arenzana, L., & Santamaria, P. (2011). Malolactic fermentation of Tempranillo wine: Contribution of the lactic acid bacteria inoculation to sensory quality and chemical composition. International Journal of Food Science and Technology, 46(11), 2373–2381. https://doi.org/10.1111/j.1365-2621.2011.02759.x
- Malherbe, S., Tredoux, A. G. J., Nieuwoudt, H. H., & du Toit, M. (2012). Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition. Journal of Industrial Microbiology and Biotechnology, 39(3), 477–494. https://doi.org/10.1007/s10295-011-1050-4
- Manera, C., Olguin, N. T., Bravo-Ferrada, B. M., Tymczyszyn, E. E., Delfederico, L., Bibiloni, H., Caballero, A. C., Semorile, L., & La Hens, D. V. (2019). Survival and implantation of indigenous psychrotrophic Oenococcus oeni strains during malolactic fermentation in a Patagonian pinot noir wine. LWT - Food Science and Technology, 108, 353–360. https://doi.org/10.1016/j.lwt.2019.02.063
- Marcobal, A., de las Rivas, B., Moreno-Arribas, M., & Munoz, R. (2005). Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods. Journal of Food Protection, 68(4), 874–878. https://doi.org/10.4315/0362-028x-68.4.874
- Marcobal, A. M., Sela, D. A., Wolf, Y. I., Makarova, K. S., & Mills, D. A. (2008). Role of hypermutability in the evolution of the genus Oenococcus. Journal of Bacteriology, 190(2), 564–570. https://doi.org/10.1128/jb.01457-07
- Mills, D. A., Rawsthorne, H., Parker, C., Tamir, D., & Makarova, K. (2005). Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiology Reviews, 29(3), 465–475. https://doi.org/10.1016/j.femsre.2005.04.011
- Pavon-Perez, J., Henriquez-Aedo, K., & Aranda, M. (2019). Mass spectrometry determination of fining-related allergen proteins in Chilean wines. Food Analytical Methods, 12(4), 827–837. https://doi.org/10.1007/s12161-018-01416-0
- Pavon-Perez, J., Henriquez-Aedo, K., Herrero, M., & Aranda, M. (2020). Occurrence of allergen proteins in wines from Chilean market. Food Additives & Contaminants. Part B, Surveillance, 13(4), 268–274. https://doi.org/10.1080/19393210.2020.1769194
- Pineda, A., Carrasco, J., Pena-Farfal, C., Henriquez-Aedo, K., & Aranda, M. (2012). Preliminary evaluation of biogenic amines content in Chilean young varietal wines by HPLC. Food Control, 23(1), 251–257. https://doi.org/10.1016/j.foodcont.2011.07.025
- Pramateftaki, P. V., Metafa, M., Karapetrou, G., & Marmaras, G. (2012). Assessment of the genetic polymorphism and biogenic amine production of indigenous Oenococcus oeni strains isolated from Greek red wines. Food Microbiology, 29(1), 113–120. https://doi.org/10.1016/j.fm.2011.09.007
- Preti, R., & Vinci, G. (2016). Biogenic amine content in red wines from different protected designations of origin of southern Italy: Chemometric characterization and classification. Food Analytical Methods, 9(8), 2280–2287. https://doi.org/10.1007/s12161-016-0415-8
- Romero, J., Ilabaca, C., Ruiz, M., & Jara, C. (2018). Oenococcus oeni in Chilean red wines: Technological and genomic characterization. Frontiers in Microbiology, 9, 90. https://doi.org/10.3389/fmicb.2018.00090
- Sanlier, N., & Bektesoglu, M. (2021). Migraine and biogenic amines. Annals of Medical and Health Sciences Research, 11(4), 1362–1371.
- Smit, A. Y., & du Toit, M. (2013). Evaluating the influence of malolactic fermentation inoculation practices and ageing on lees on biogenic amine production in wine. Food and Bioprocess Technology, 6(1), 198–206. https://doi.org/10.1007/s11947-011-0702-8
- Sumby, K. M., Grbin, P. R., & Jiranek, V. (2014). Implications of new research and technologies for malolactic fermentation in wine. Applied Microbiology and Biotechnology, 98(19), 8111–8132. https://doi.org/10.1007/s00253-014-5976-0
- Tofalo, R., Battistelli, N., Perpetuini, G., Valbonetti, L., Rossetti, A. P., Perla, C., Zulli, C., & Arfelli, G. (2021). Oenococcus oeni lifestyle modulates wine volatilome and malolactic fermentation outcome. Frontiers in Microbiology, 12(2735), 1–10. https://doi.org/10.3389/fmicb.2021.736789
- Toledo, M. S., Armijo, P., Godoy, L., Saavedra, J., & Ganga, M. A. (2018). Determination of effects of genetic diversity of Oenococcus oeni and physicochemical characteristics on malolactic fermentation across Chilean vineyards, using multivariate methods. Journal of Pure & Applied Microbiology, 12(1), 15–21. https://doi.org/10.22207/JPAM.12.1.03
- Virdis, C., Sumby, K., Bartowsky, E., & Jiranek, V. (2021). Lactic acid bacteria in wine: Technological advances and evaluation of their functional role. Frontiers in Microbiology, 11, 1–16. https://doi.org/10.3389/fmicb.2020.612118