A novel L-asparaginase from the symbiotic Enterobacter aerogenes isolated from Eucheuma sp.
Corresponding Author
Mashuri Masri
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Correspondence
Mashuri Masri, Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, South Sulawesi, 92113, Indonesia.
Email: [email protected]
Contribution: Methodology, Resources, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorFatmawati Nur
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Search for more papers by this authorJoko Widodo
Laboratory of Technology Department, STIKES Mega Rezky, Makassar, Indonesia
Contribution: Funding acquisition, Methodology, Validation, Writing - original draft
Search for more papers by this authorEkafadly Jusuf
School of Management and Business (STIE) Amkop, Makassar, Indonesia
Search for more papers by this authorWindy Sahar
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Search for more papers by this authorNurul Wahida
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Data curation, Resources, Writing - original draft
Search for more papers by this authorRisnawati Risnawati
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Search for more papers by this authorSiti Nurbaya
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Data curation, Resources
Search for more papers by this authorTuti Asriani Asri
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Conceptualization, Resources
Search for more papers by this authorNurul Fadly
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Conceptualization, Project administration
Search for more papers by this authorCorresponding Author
Mashuri Masri
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Correspondence
Mashuri Masri, Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, South Sulawesi, 92113, Indonesia.
Email: [email protected]
Contribution: Methodology, Resources, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorFatmawati Nur
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Search for more papers by this authorJoko Widodo
Laboratory of Technology Department, STIKES Mega Rezky, Makassar, Indonesia
Contribution: Funding acquisition, Methodology, Validation, Writing - original draft
Search for more papers by this authorEkafadly Jusuf
School of Management and Business (STIE) Amkop, Makassar, Indonesia
Search for more papers by this authorWindy Sahar
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Search for more papers by this authorNurul Wahida
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Data curation, Resources, Writing - original draft
Search for more papers by this authorRisnawati Risnawati
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Search for more papers by this authorSiti Nurbaya
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Data curation, Resources
Search for more papers by this authorTuti Asriani Asri
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Conceptualization, Resources
Search for more papers by this authorNurul Fadly
Department of Biology, Faculty of Science and Technology, Alauddin State Islamic University, Makassar, Indonesia
Contribution: Conceptualization, Project administration
Search for more papers by this authorAbstract
This study was aimed to purify and characterize the enzyme L-asparaginase from endophytic microorganisms of Eucheuma sp. in Puntondo Island, South Sulawesi, Indonesia. Research stages were ammonium sulfate precipitation, dialysis, and Sephadex G-75 gel filtration chromatography and Sephadex CMC-50 ion-exchange chromatography matrices. The result of test activities of ammonium sulfate fraction showed the highest range of 40%–60% the activity value of 6.71 IU/ml. The highest protein content was obtained on a 0%–20% fraction of 2.76 mg/ml. Temperature and pH assessments indicated that L-asparaginase had optimum activity at 37°C and pH 8, respectively. At the stage of dialysis, the highest protein content was 5.17 IU/ml in a 0%–20% fraction, and the highest enzyme activity was 1.23 IU/ml in a 20%–40% fraction. The results of gel filtration chromatography fractions G-75 were F5–F10, with a specific activity of 0.60 U/mg, 2.05 times higher purity level than the crude extract enzyme. The results of CMC-50 ion-exchange chromatography showed that F54 and F55 fractions had a specific activity of 106.97 and 295.38 U/mg, respectively, with a purity level of 366.34 and 1,011.57 times higher than the crude extract enzyme.
Novelty impact statement
Enterobacter aerogenes strain P5, an endophytic bacterium from Eucheuma sp., can produce pure L-asparaginase enzyme with a high specific activity applied in pharmaceuticals nutraceutical applications.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article.
REFERENCES
- Alrumman, S. A., Mostafa, Y. S., Al-izran, K. A., Alfaifi, M. Y., Taha, T. H., & Elbehairi, S. E. (2019). Production and anticancer activity of an L-Asparaginase from Bacillus licheniformis isolated from the Red Sea, Saudi Arabia. Scientific Reports, 9, 1–14. https://doi.org/10.1038/s41598-019-40512-x
- Baker, S. L., Munasinghe, A., Kaupbayeva, B., Rebecca Kang, N., Certiat, M., Murata, H., Matyjaszewski, K., Lin, P., Colina, C. M., & Russell, A. J. (2019). Transforming protein-polymer conjugate purification by tuning protein solubility. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12612-9
10.1038/s41467?019?12612?9 Google Scholar
- Baltierra-Trejo, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2015). Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119, 126–131. https://doi.org/10.1016/j.mimet.2015.10.007
- Beck, S. E., Ryu, H., Boczek, L. A., Cashdollar, J. L., Jeanis, K. M., Rosenblum, J. S., Lawal, Oliver R., & Linden, Karl G. (2017). Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Research, 109, 207–216. https://doi.org/10.1016/j.watres.2016.11.024
- Belén, L. H., Lissabet, J. B., de Oliveira, R.-Y., Effer, B., Monteiro, G., Pessoa, A., & Farías Avendaño, J. G. (2019). A structural in silico analysis of the immunogenicity of L-asparaginase from Escherichia coli and Erwinia carotovora. Biologicals, 59, 47–55. https://doi.org/10.1016/j.biologicals.2019.03.003
- Bleakley, S., & Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6, 33. https://doi.org/10.3390/foods6050033
- Burgess, R. R., & Deutscher, M. P. (2009). Protein precipitation techniques. In J. N. Abelson & M. I. Simon (Eds.), Methods in enzymology, guide to protein purification ( 2nd ed., Vol. 463, pp. 331–342). Elsevier Inc. https://doi.org/10.1016/S0076-6879(09)63020-2
10.1016/S0076-6879(09)63020-2 Google Scholar
- Carlsson, A. C. C., Scholfield, M. R., Rowe, R. K., Ford, M. C., Alexander, A. T., Mehl, R. A., & Ho, P. S. (2018). Increasing enzyme stability and activity through hydrogen bond-enhanced halogen bonds. Biochemistry, 57, 4135–4147. https://doi.org/10.1021/acs.biochem.8b00603
- Cheng, X., Wei, Q., Ma, Y., Shi, R., Chen, T., Wang, Y., Ma, C., & Lu, Y. (2020). Antibacterial and osteoinductive biomacromolecules composite electrospun fiber. International Journal of Biological Macromolecules, 143, 958–967. https://doi.org/10.1016/j.ijbiomac.2019.09.156
- Coskun, O. (2016). Separation techniques: Chromatography. Northern Clinics of Istanbul, 3, 156–160. https://doi.org/10.14744/nci.2016.32757
- Curtis, R. A., Ulrich, J., Montaser, A., Prausnitz, J. M., & Blanch, H. W. (2002). Protein-protein interactions in concentrated electrolyte solutions. Biotechnology and Bioengineering, 79(4), 367–380. https://doi.org/10.1002/bit.10342
- De Cocker, P., Bessiere, Y., Hernandez-Raquet, G., Dubos, S., Mozo, I., Gaval, G., Caligaris, M., Barillon, B., Vlaeminck, Se, & Sperandio, M. (2018). Enrichment and adaptation yield high anammox conversion rates under low temperatures. Bioresource Technology, 250, 505–512. https://doi.org/10.1016/j.biortech.2017.11.079
- Desai, S. S., Chopra, S. J., & Hungund, B. S. (2016). Production, purification and characterization of L-Glutaminase from Streptomyces sp. isolated from soil. Journal of Applied Pharmaceutical Science, 6, 100–105. https://doi.org/10.7324/JAPS.2016.60715
- Diogo, M. M., Queiroz, J. A., Monteiro, G. A., Martins, S. A. M., Ferreira, G. N. M., & Prazeres, D. M. F. (2000). Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography. Biotechnology and Bioengineering, 68(5), 576–583. https://doi.org/10.1002/(sici)1097-0290(20000605)68:5<576:aid-bit13>3.0.co;2-5
10.1002/(sici)1097?0290(20000605)68:5<576:aid?bit13>3.0.co;2?5 CAS PubMed Web of Science® Google Scholar
- Doriya, K., Jose, N., Gowda, M., & Kumar, D. S. (2016). Solid-state fermentation vs submerged fermentation for the production of L-Asparaginase. In S. K. Kim & F. Toldra (Eds.). Advances in food and nutrition research. Marine enzyme biotechnology: Production and industrial application. Part 1 (Vol. 78. pp. 115–135). Elsevier Inc.
10.1016/bs.afnr.2016.05.003 Google Scholar
- El-Naggar, N. E. A., Deraz, S. F., El-Ewasy, S. M., & Suddek, G. M. (2018). Purification, characterization and immunogenicity assessment of glutaminase free L-asparaginase from Streptomyces brollosae NEAE-115. BMC Pharmacology and Toxicology, 19, 1–15. https://doi.org/10.1186/s40360-018-0242-1
- El-Naggar, N. E. A., Deraz, S. F., Soliman, H. M., El-Deeb, N. M., & El-Ewasy, S. M. (2016). Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti-colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82. Scientific Reports, 6, 1–16. https://doi.org/10.1038/srep32926
- Esfandiary, R., Parupudi, A., Casas-Finet, J., Gadre, D., & Sathish, H. (2015). Mechanism of reversible self-association of a monoclonal antibody: Role of electrostatic and hydrophobic interactions. Journal of Pharmaceutical Sciences, 104, 577–586. https://doi.org/10.1002/jps.24237
- Finke, B., Luethen, F., Schroeder, K., Mueller, P., Bergemann, C., Frant, M., Ohl, A., & Nebe, B. (2007). The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials, 28(30), 4521–4534. https://doi.org/10.1016/j.biomaterials.2007.06.028
- Ghasemian, A., Al-marzoqi, A. H., Al-abodi, H. R., Alghanimi, Y. K., Kadhum, S. A., Shokouhi Mostafavi, S. K., & Fattahi, A. (2019). Bacterial L-asparaginases for cancer therapy: Current knowledge and future perspectives. Journal of Cellular Physiology, 234, 19271–19279.
- Green, A. A., & Hughes, W. L. (1955). Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods in Enzymology, 1, 67–90. https://doi.org/10.1016/0076-6879(55)01014-8
- Gulati, R., Saxena, R. K., & Gupta, R. (1997). A rapid plate assay for screening L-asparaginase producing micro-organisms. Letters in Applied Microbiology, 24, 23–26.
- Huang, Z., Zhuge, C., Dai, X., Liu, H., & She, Y. (2020). Determination of trace anions in sodium carboxymethyl cellulose by ion chromatography. Chromatographia, 83, 677–681. https://doi.org/10.1007/s10337-020-03879-y
- Jean-Étienne, R. L. M., Chen, C., Qiwen, L., Paula, B. G., Carlos, D. P., de Brandão Prieto-da-Silva, Álvaro, Ming-Yuen Lee, S., & Rádis-Baptista, G. (2018). The holo-transcriptome of the Zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A Plentiful Source of Enzymes for potential application in green chemistry, industrial and pharmaceutical biotechnology. Marine Drugs, 16(6), 207. https://doi.org/10.3390/md16060207
- Kotzia, G. A., & Labrou, N. E. (2005). Cloning, expression and characterisation of Erwinia carotovora L-asparaginase. Journal of Biotechnology, 119, 309–323. https://doi.org/10.1016/j.jbiotec.2005.04.016
- Lauritano, C., De Luca, D., Ferrarini, A., Avanzato, C., Minio, A., Esposito, F., & Ianora, A. (2017). De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Scientific Reports, 7(1), 1–12.
- Leng, E., Zhang, Y., Peng, Y., Gong, X., Mao, M., Li, X, & Yu, Y. (2018). In situ structural changes of crystalline and amorphous cellulose during slow pyrolysis at low temperatures. Fuel, 216, 313–321. https://doi.org/10.1016/j.fuel.2017.11.083
- Li, P., Kaslan, M., Lee, S. H., Yao, J., & Gao, Z. (2017). Progress in exosome isolation techniques. Theranostics, 7, 789–804. https://doi.org/10.7150/thno.18133
- Mahajan, R. V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P. C., & Saxena, R. K. (2014). Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: In vitro evaluation of anti-cancerous properties. PLoS One, 9, 1–8. https://doi.org/10.1371/journal.pone.0099037
- Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment, 29, 205–220. https://doi.org/10.1080/13102818.2015.1008192
- Monajati, M., Borandeh, S., Hesami, A., Mansouri, D., & Tamaddon, A. M. (2018). Immobilization of L-asparaginase on aspartic acid functionalized graphene oxide nanosheet: Enzyme kinetics and stability studies. Chemical Engineering Journal, 354, 1153–1163.
- Moon, Y. U., Curtis, R. A., Anderson, C. O., Blanch, H. W., & Prausnitz, J. M. (2000). Journal of Solution Chemistry, 29(8), 699–718. https://doi.org/10.1023/a:1005112927213
- Pavithra, G., Bindal, S., Rana, M., & Srivastava, S. (2020). Role of endophytic microbes against plant pathogens: A review. Asian Journal of Plant Sciences, 19, 54–62.
- Puri, S. K., Habbu, P. V., Kulkarni, P. V., & Kulkarni, V. H. (2018). Nitrogen containing secondary metabolites from endophytes of medicinal plants and their biological/pharmacological activities-a review. Systematic Reviews in Pharmacy, 9, 22–30. https://doi.org/10.5530/srp.2018.1.5
- Puspita, M., Setyawidati, N. A. R., Stiger-Pouvreau, V., Vandanjon, L., Widowati, I., Radjasa, O. K., Bedouxa, G., & Nathalie. (2020). Indonesian Sargassum species bioprospecting: Potential applications of bioactive compounds and challenge for sustainable development. In N. Bourgougnon (Ed.), Advances in botanical research. Seaweeds around the world: State of art and perspectives (Vol. 95, pp. 113–161). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2019.12.002
10.1016/bs.abr.2019.12.002 Google Scholar
- Ratzke, C., & Gore, J. (2017). Modifying and reacting to the environmental pH drives bacterial interactions. BioRxiv, 16, 1–20.
- Salem, M. A., Jüppner, J., Bajdzienko, K., & Giavalisco, P. (2016). Protocol: A fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods, 12, 1–15. https://doi.org/10.1186/s13007-016-0146-2
- Sha, X. M., Tu, Z. C., Liu, W., Wang, H., Shi, Y., Huang, T., , & Man, Z.-Z. (2014). Effect of ammonium sulfate fractional precipitation on gel strength and characteristics of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. Food Hydrocolloids, 36, 173–180. https://doi.org/10.1016/j.foodhyd.2013.09.024
- Smith-Mungo, L. I., & Kagan, H. M. (1998). Lysyl oxidase: Properties, regulation and multiple functions in biology. Matrix Biology, 16(7), 387–398. https://doi.org/10.1016/s0945-053x(98)90012-9
- Spier, M. R., Peron-Schlosser, B., Paludo, L. C., Gallo-García, L. A., & Zanette, C. M. (2020). Microalgae as enzymes biofactories. In E. J. Lopes, M. M. Maroneze, M. I. Queiroz & L. Q. Zepka (Eds.), Handbook of microalgae-based processes and products (Vol. 2026, pp. 687–706). Academic Press.
10.1016/B978-0-12-818536-0.00025-7 Google Scholar
- Stone, M. C., & Giorgio, C. (2007). Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. Journal of Chromatography A, 1146(2), 202–215. https://doi.org/10.1016/j.chroma.2007.02.041
- Tamayo Tenorio, A., Kyriakopoulou, K. E., Suarez-Garcia, E., van den Berg, C., & van der Goot, A. J. (2018). Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass—Consequences for industrial use. Trends in Food Science & Technology, 71, 235–245. https://doi.org/10.1016/j.tifs.2017.11.010
- Wingfield, P. (1998). Protein precipitation using ammonium sulfate. Current Protocols in Protein Science, A.3F.1–A.3F.8. https://doi.org/10.1002/0471140864.psa03fs13
10.1002/0471140864.psa03fs13 Google Scholar
- Zhao, S., Zou, L., Tang, C. Y., & Mulcahy, D. (2012). Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, 396, 1–21. https://doi.org/10.1016/j.memsci.2011.12.023