Low-viscosity dietary fiber production by enzymatic hydrolysis of galactomannan from Caesalpinia pulcherrima seeds: Optimization and physicochemical characterization
Corresponding Author
Antonia Ariana Camelo Passos
Science and Technology Center, Ceará State University—UECE, Fortaleza, Brazil
Correspondence
Antonia Ariana Camelo Passos, Science and Technology Center, Ceará State University—UECE. Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, CEP 60714-903, Ceará, Brazil.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration
Search for more papers by this authorMighay Lovera
Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
Contribution: Data curation, Formal analysis, Methodology, Supervision, Visualization, Writing - review & editing
Search for more papers by this authorMaria do Socorro Rocha Bastos
Embrapa Tropical Agroindustry, Fortaleza, Brazil
Contribution: Conceptualization, Formal analysis, Supervision, Writing - review & editing
Search for more papers by this authorJeanny da Silva Maciel
Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
Contribution: Conceptualization, Formal analysis, Methodology, Writing - review & editing
Search for more papers by this authorVenícios Gonçalves Sombra
Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
Contribution: Formal analysis, Investigation, Methodology
Search for more papers by this authorRenata Chastinet Braga
Federal Institute of Education, Science and Technology of Ceará, Limoeiro do Norte, Brazil
Contribution: Conceptualization, Visualization, Writing - review & editing
Search for more papers by this authorAna Cristina de Oliveira Monteiro Moreira
Central of Experimental Biology—NUBEX, University of Fortaleza, Fortaleza, Brazil
Search for more papers by this authorRenato de Azevedo Moreira
Central of Experimental Biology—NUBEX, University of Fortaleza, Fortaleza, Brazil
Contribution: Conceptualization, Formal analysis, Funding acquisition, Investigation, Validation, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Antonia Ariana Camelo Passos
Science and Technology Center, Ceará State University—UECE, Fortaleza, Brazil
Correspondence
Antonia Ariana Camelo Passos, Science and Technology Center, Ceará State University—UECE. Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, CEP 60714-903, Ceará, Brazil.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration
Search for more papers by this authorMighay Lovera
Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
Contribution: Data curation, Formal analysis, Methodology, Supervision, Visualization, Writing - review & editing
Search for more papers by this authorMaria do Socorro Rocha Bastos
Embrapa Tropical Agroindustry, Fortaleza, Brazil
Contribution: Conceptualization, Formal analysis, Supervision, Writing - review & editing
Search for more papers by this authorJeanny da Silva Maciel
Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
Contribution: Conceptualization, Formal analysis, Methodology, Writing - review & editing
Search for more papers by this authorVenícios Gonçalves Sombra
Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
Contribution: Formal analysis, Investigation, Methodology
Search for more papers by this authorRenata Chastinet Braga
Federal Institute of Education, Science and Technology of Ceará, Limoeiro do Norte, Brazil
Contribution: Conceptualization, Visualization, Writing - review & editing
Search for more papers by this authorAna Cristina de Oliveira Monteiro Moreira
Central of Experimental Biology—NUBEX, University of Fortaleza, Fortaleza, Brazil
Search for more papers by this authorRenato de Azevedo Moreira
Central of Experimental Biology—NUBEX, University of Fortaleza, Fortaleza, Brazil
Contribution: Conceptualization, Formal analysis, Funding acquisition, Investigation, Validation, Visualization, Writing - review & editing
Search for more papers by this authorAbstract
This study optimizes the enzymatic hydrolysis of galactomannan from Caesalpinia pulcherrima seeds to produce a low-viscosity dietary fiber. The effects of cellulase concentration (4.17–9.83 U/g of galactomannan) and hydrolysis time (98–392 min) on two response variables were evaluated using RSM. Some physical and chemical characteristics were determined on the hydrolysate selected in comparison with galactomannan. Both factors negatively affected the intrinsic viscosity, although positively influenced (p < .05) the reducing sugar content. The optimum condition was 9 U/g with 300 min, with 1.28 dl/g of intrinsic viscosity and 1.33% of reducing sugar. The hydrolysis increased total dietary fiber (1.9%) and soluble dietary fiber (2.8%) contents and decreased Mn from 26.4 × 104 to 3.2 × 104 g/mol. Thermal and scanning electron microscope analysis suggested internal and external molecular changes, respectively. However, FT-IR, 1H, and 13C-NMR spectra showed characteristic chemical bonds and a mannose/galactose ratio of 2:1. This hydrolyzed galactomannan is suitable as a low-viscose dietary fiber with potential applications in food industry.
Novelty Impact Statement
- Galactomannan from seeds of Caesalpinia pulcherrima was successfully hydrolyzed.
- Enzymatic hydrolysis caused a decrease of 87.72% in molecular mass.
- The hydrolyzed product remained high in dietary fiber (84.3%).
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- AOAC. (2005). Official methods of analysis of the AOAC International. AOAC International.
- AOAC. (2010). Official methods of analysis of the AOAC International. In Official method 991.43 total, soluble, and insoluble dietary fiber in foods.
- Azero, E. G., & Andrade, C. T. (2002). Testing procedures for galactomannan purification. Polymer Testing, 21, 551–556. https://doi.org/10.1016/S0142-9418(01)00123-4
- Braga, R. C., Teixeira-Sá, D. M. A., Ribeiro, A. F., Miranda, R. L., Almeida, L. M., Horta, A. C., & Moreira, R. A. (2011). Evaluation of Caesalpinia Pulcherrima endospermic gum as affinity matrices for galactose-binding lectins interaction. Brazilian Archives of Biology and Technology, 54, 283–292. https://doi.org/10.1590/S1516-89132011000200009
- Buriti, F. C. A., Dos Santos, K. M. O., Sombra, V. G., Maciel, J. S., Teixeira Sá, D. M. A., Salles, H. O., Oliveira, G., Paula, R. C. M., Feitosa, J. P. A., Moreira, A. C. O. M., Moreira, R. A., & Egito, A. S. (2014). Characterisation of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds as a potential dietary fiber. Food Hydrocolloids, 35, 512–521.
- Cerqueira, M. A., Pinheiro, A. C., Souza, B. W. S., Lima, A. M. P., Ribeiro, C., Miranda, C., Teixeira, J. A., Moreira, R. A., Coimbra, M. A., Gonçalves, P., & Vicente, A. A. (2009). Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydrate Polymers, 75, 408–414. https://doi.org/10.1016/j.carbpol.2008.07.036
- Cerqueira, M. A., Souza, B. W. S., Simões, J., Teixeira, J. A., Domingues, M. R. M., Coimbra, M. A., & Vicente, A. A. (2011). Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydrate Polymers, 83, 179–185. https://doi.org/10.1016/j.carbpol.2010.07.036
- Codex Alimentarius. (2013). Guidelines on nutrition labelling CAC/GL 2–1985 as last amended 2013. Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission, FAO. FAO.
- Erkan, S. B., Ozcan, A., Yilmazer, C., Gurler, H. N., Karahalil, E., Germec, M., Yatmaz, E., Kucukcetin, A., & Turhan, I. (2020). The effects of mannanase activity on viscosity in different gums. Journal of Food Processing and Preservation, 45(8), e14820. https://doi.org/10.1111/jfpp.14820
- Feng, L., Yin, J., Nie, S., Wan, Y., & Xie, M. (2018). Enzymatic purification and structure characterization of glucuronoxylan from water extract of Cassia obtusifolia seeds. International Journal of Biological Macromolecules, 107, 1438–1446. https://doi.org/10.1016/j.ijbiomac.2017.10.014
- Frota, H. B. M., Menezes, J. E. S. A., Siqueira, S. M. C., Ricardo, N. M. P., Araújo, T. G., Souza, C. A. G., Bandeira, P. N., & Santos, H. S. (2018). Preparação, caracterização físico-química e liberação controlada de micropartículas de galactomanana contendo alantoína. Revista Química Nova, 41, 544–549. https://doi.org/10.21577/0100-4042.20170214
- Germec, M., Ozcan, A., & Turhan, I. (2019). Bioconversion of wheat bran into high value-added products and modelling of fermentations. Industrial Crops and Products, 139, 111565. https://doi.org/10.1016/j.indcrop.2019.111565
- Guo, R., Ai, L., Cao, N., Ma, J., Wu, Y., Wu, J., & Sun, X. (2016). Physicochemical properties and structural characterization of a galactomannan from Sophora alopecuroides L. seeds. Carbohydrate Polymers, 140, 451–460. https://doi.org/10.1016/j.carbpol.2015.12.058
- Hostettler, F., Borel, E., & Deuel, H. (1951). Über die reduktion der 3.5 dinitrosalicylsäure durch Zucher. Helvetica Chimica Acta, 34, 2132–2139.
- Huggins, M. L. (1942). The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. Journal of American Chemical Society, 64, 2716–2720.
- Hussain, M., Bakalis, S., Gouseti, O., Zahoor, T., Anjum, F. M., & Shahid, M. (2015). Dynamic and shear stress rheological properties of guar galactomannans and its hydrolyzed derivatives. International Journal of Biological Macromolecules, 72, 687–691. https://doi.org/10.1016/j.ijbiomac.2014.09.019
- Ibrahim, K. A., El-eswed, B., Abu-sbeih, K. A., Arafat, T. A., Omari, M. M. H. A., Darras, F. H., & Badwan, A. A. (2016). Preparation of chito-oligomers by hydrolysis of chitosan in the presence of zeolite as adsorbent. Marine Drugs, 14, 43–56. https://doi.org/10.3390/md14080043
- Jian, H.-L., Lin, X.-J., Zhang, W.-A., Zhang, W.-M., Sun, D.-F., & Jiang, J.-X. (2013). Characterization of fractional precipitation behavior of galactomannan gums with ethanol and isopropanol. Food Hydrocolloids, 40, 115–121.
- Kong, L., Yu, L., Feng, T., Yin, X., Liu, T., & Dong, L. (2015). Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydrate Polymers, 125, 1–8. https://doi.org/10.1016/j.carbpol.2015.02.042
- Kraemer, E. O. (1938). Molecular weights of celluloses. Industrial Engineering Chemistry, 30, 1200–1205.
- Li, S., Junsheng, L. I., Zhenzhou, Z., Cheng, S., He, J., & Lamikanra, O. (2020). Soluble dietary fiber and polyphenol complex in lotus root: Preparation, interaction and identification. Food Chemistry, 314, 1–8. https://doi.org/10.1016/j.foodchem.2020.126219
- Li, Y., Yi, P., Wang, N., Liu, J., Liu, X., Yan, Q., & Jiang, Z. (2017). High level expression of β-mannanase (RmMan5A) in Pichia pastoris for partially hydrolyzed guar gum production. International Journal of Biological Macromolecules, 105, 1171–1179. https://doi.org/10.1016/j.ijbiomac.2017.07.150
- Liyanage, S., Abidi, N., Auld, D., & Moussa, H. (2015). Chemical and physical characterization of galactomannan extracted from guar cultivars (Cyamopsis tetragonolobus L.). Industrial Crops and Products, 74, 388–396. https://doi.org/10.1016/j.indcrop.2015.05.013
- Macagnan, F. T., Silva, L. P., & Hecktheuer, L. H. (2016). Dietary fiber: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International, 85, 144–154.
- Mary, P. R., Prashanth, K. V. H., Vasu, P., & Kapoor, M. (2019). Structural diversity and prebiotic potential of short chain β-manno-oligosaccharides generated from guar gum by endo-β-mannanase (ManB-1601). Carbohydrate Research, 486, 1–9. https://doi.org/10.1016/j.carres.2019.107822
- Mendes, F. R. S., Bastos, M. S. R., Mendes, L. G., Silva, A. R. A., Sousa, F. D., Monteiro-Moreira, A. C. O., Cheng, H. N., Biswas, A., & Moreira, R. A. (2017). Preparation and evaluation of hemicellulose films and their blends. Food Hydrocolloids, 70, 181–190. https://doi.org/10.1016/j.foodhyd.2017.03.037
- Mudgil, D., Barak, S., & Khatkar, B. S. (2012a). Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydrate Polymers, 90, 224–228. https://doi.org/10.1016/j.carbpol.2012.04.070
- Mudgil, D., Barak, S., & Khatkar, B. S. (2012b). X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. International Journal of Biological Macromolecules, 50, 1035–1039. https://doi.org/10.1016/j.ijbiomac.2012.02.031
- Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: Processing, properties and food applications—A review. Journal Food Science Technology, 51, 409–418. https://doi.org/10.1007/s13197-011-0522-x
- Mudgil, D., Barak, S., & Khatkar, B. S. (2016). Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough. International Journal of Biological Macromolecules, 93, 131–135. https://doi.org/10.1016/j.ijbiomac.2016.08.064
- Mudgil, D., Barak, S., Patel, A., & Shah, N. (2018). Partially hydrolyzed guar gum as a potential prebiotic source. International Journal of Biological Macromolecules, 112, 207–210. https://doi.org/10.1016/j.ijbiomac.2018.01.164
- Muschin, T., & Yoshida, T. (2012). Structural analysis of galactomannans by NMR spectroscopy. Carbohydrate Polymers, 87, 1893–1898. https://doi.org/10.1016/j.carbpol.2011.08.059
- Noordin, M. Y., Venkatesh, V. C., Sharif, S., Elting, S., & Abdullah, A. (2004). Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology, 145, 46–58. https://doi.org/10.1016/S0924-0136(03)00861-6
- Passos, A. A. C., Teixeira Sá, D. M. A., Andrade, P. L., Barreto, J. J. S., Santos, N. L., Chagas, R. M. M., Alves, T. B., Chaves, M. J. L., Maciel, J. S., Egito, A. S., Moreira, R. A., & Braga, R. C. (2020). Partially hydrolyzed galactomannan from Adenanthera pavonina seeds used as stabilizer, fat substitute, and food fiber source for mousses. Polymer Bulletin, 78(6), 2951–2973. https://doi.org/10.1007/s00289-020-03246-9
- Pollard, M. A., Eder, B., Fischer, P., & Windhab, E. J. (2010). Characterization of galactomannans isolated from legume endosperms of Caesalpinioideae and Faboideae subfamilies by multidetection aqueous SEC. Carbohydrate Polymers, 79, 70–84. https://doi.org/10.1016/j.carbpol.2009.07.028
- Prajapat, A. L., & Gogate, P. R. (2015). Depolymerization of guar gum solution using different approaches based on ultrasound and microwave irradiations. Chemical Engineering and Processing, 88, 1–9. https://doi.org/10.1016/j.cep.2014.11.018
- Prajapat, A. L., Subhedar, P. B., & Gogate, P. R. (2016). Ultrasound assisted enzymatic depolymerization of aqueous guar gum solution. Ultrasonics Sonochemistry, 29, 84–92. https://doi.org/10.1016/j.ultsonch.2015.09.009
- Pugliese, M. A., Goitia, M. T., Yossen, M., Cifone, N., Agullo, E., & Andreucetti, C. N. (2011). Improved postharvest quality in Patagonian squash (Cucurbita moschata) coated with radiation depolymerized chitosan. Radiation Physics and Chemistry, 80, 1406–1413. https://doi.org/10.1016/j.radphyschem.2011.07.003
- Rodriguez-Canto, W., Chel-Guerrero, L., Fernandez, V. V. A., & Aguilar-Vega, M. (2019). Delonix regia galactomannan hydrolysates: Rheological behavior and physicochemical characterization. Carbohydrate Polymers, 206, 573–582. https://doi.org/10.1016/j.carbpol.2018.11.028
- Rungruangsaphakun, J., & Keawsompong, S. (2018). Optimization of hydrolysis conditions for the mannooligosaccharides copra meal hydrolysate production. 3 Biotech, 8, 160–169. https://doi.org/10.1007/s13205-018-1178-2
- Salvalaggio, M. O., Freitas, R. A., Franqueto, E. M., Koop, H. S., & Silveira, J. L. M. (2015). Influence of the extraction time on macromolecular parameters of galactomannans. Carbohydrate Polymers, 116, 200–206. https://doi.org/10.1016/j.carbpol.2014.05.036
- Srivastava, P. K., Panwar, D., Prashanth, K. V. H., & Kapoor, M. (2017). Structural characterization and in vitro fermentation of β-mannooligosaccharides produced from Locust bean gum by GH-26 endo β-1,4-mannanase (ManB-1601). Journal of Agricultural and Food Chemistry, 65, 2827–2838.
- Yilmazer, C., Gurler, H. N., Erkan, S. B., Ozcan, A., Yavuz, G. H., Germec, M., Yatmaz, E., & Turhan, I. (2020). Optimization of mannooligosaccharides production from different hydrocolloids via response surface methodology using a recombinant Aspergillus sojae β-mannanase produced in the microparticle-enhanced large-scale stirred tank bioreactor. Journal Processing and Preservation, 45, e14916.