Comparative evaluation of bioactive compounds in lyophilized and tray-dried rocket (Eruca sativa)
Noor A. Alruwaih
Department of Food Science and Agricultural Chemistry, McGill University, Quebec, H9X 3V9 Canada
Search for more papers by this authorCorresponding Author
Varoujan A. Yaylayan
Department of Food Science and Agricultural Chemistry, McGill University, Quebec, H9X 3V9 Canada
Correspondence Varoujan A. Yaylayan, McGill University, Department of Food Science and Agricultural Chemistry, 21,111 Lakeshore, Ste. Anne de Bellevue, Quebec, Canada, H9X 3V9. Email: [email protected]Search for more papers by this authorNoor A. Alruwaih
Department of Food Science and Agricultural Chemistry, McGill University, Quebec, H9X 3V9 Canada
Search for more papers by this authorCorresponding Author
Varoujan A. Yaylayan
Department of Food Science and Agricultural Chemistry, McGill University, Quebec, H9X 3V9 Canada
Correspondence Varoujan A. Yaylayan, McGill University, Department of Food Science and Agricultural Chemistry, 21,111 Lakeshore, Ste. Anne de Bellevue, Quebec, Canada, H9X 3V9. Email: [email protected]Search for more papers by this authorAbstract
Cruciferous species such as Eruca sativa (rocket) are known to contain a variety of bioactive compounds. Total flavonoid assay showed significantly different concentrations between the lyophilized rocket (LR) (3.29 ± 0.15 g/100 g) and tray-dried rocket (TDR) samples (2.42 ± 0.22 g/100 g) measured as quercetin equivalents (QE) although the total phenolic content between the samples showed no statistical difference: 8.67 ± 0.6 g/100g QE and 8.5 ± 0.8 g/100g QE, for LR and TDR, respectively. The antioxidant activity, measured using the DPPH• assay indicated a similar scavenging activity for LR and TDR. Moreover, total isothiocyanate contents showed a two-fold higher concentration in the TDR sample (6.05 ± 0.83 μg/g) versus LR (3.26 ± 0.59 μg/g). ESI/qTOF/LC/MS analysis indicated the presence of glycosides in the LR sample and aglycones in the TDR sample. Images from Scanning Electron Microscopy revealed variations in the average particle diameter in TDR and LR particles.
Practical applications
The comparison of two different pre-processing methods (lyophilization and tray-drying) to determine the fate of bioactive compounds such as flavonoids and isothiocyanates in arugula will facilitate the production of large batches of powder efficiently. The dehydrated powder may be used as a functional ingredient in a wide array of food products to provide enhanced nutritional benefits and good shelf life as well as reducing vegetable waste and energy consumption.
REFERENCES
- Ahmed, J., Al-Salman, F., & Almusallam, A. S. (2013). Effect of blanching on thermal color degradation kinetics and rheological behavior of rocket (Eruca sativa) puree. Journal of Food Engineering, 119, 660–667.
- Apak, R. A., Özyürek, M., Güçlü, K., & Çapanoğlu, E. (2015). Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays. Journal of Agricultural and Food Chemistry, 64, 1046–1070.
- Arabbi, P. R., Genovese, M. I. S., & Lajolo, F. M. (2004). Flavonoids in vegetable foods commonly consumed in Brazil and estimated ingestion by the Brazilian population. Journal of Agricultural and Food Chemistry, 52, 1124–1131.
- Bell, L., & Wagstaff, C. (2014). Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 62, 4481–4492.
- Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (turkish rocket). Journal of Agricultural and Food Chemistry, 54, 4005–4015.
- Bhandari, D. C., & Chandel, K. P. S. (1996). Status of rocket germplasm in India: research accomplishments and priorities. In S. Padulosi & D. Pignone (Eds.), Rocket: a Mediterranean crop for the world (pp. 67–75). Italy: International Plant Genetic Resources Institute. Report of a workshop 13–14 December 1996, Legnaro (Padova), Italy.
- Blaževic, I., & Mastelic, J. (2008). Free and bound volatiles of rocket (Eruca sativa Mill.). Flavour and Fragrance Journal, 23, 278–285.
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie', 28, 25–30.
- Brown, A. F., Yousef, G. G., Jeffery, E. H., Klein, B. P., Wallig, M. A., Kushad, M. M., & Juvik, J. A. (2002). Glucosinolate profiles in broccoli: Variation in levels and implications in breeding for cancer chemoprotection. Journal of the American Society for Horticultural Science, 127, 807–813.
- Cannac, M., Ferrat, L., Barboni, T., Pergent, G., & Pasqualini, V. (2007). The influence of tissue handling on the flavonoid content of the aquatic plant posidonia oceanica. Journal of Chemical Ecology, 33, 1083–1088.
- Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113, 166–172.
- Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C, (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.
- Choi, M. M. F., Shuang, S., H.Y. Lai, S. C. C., Cheng, R. C. W., Cheung, B. K. B., & Lee, A. W. M. (2004). Gas chromatography-mass spectrometric determination of total isothiocyanates in Chinese medicinal herbs. Analytica Chimica Acta, 516, 155–163.
- Cicco, N., Lanorte, M. T., Paraggio, M., Viggiano, M., & Lattanzio, V. (2009). A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91, 107–110.
- Degl'innoocenti, E., Pardossi, A., Tattini, M., & Guidi, L. (2007). Phenolic compounds and antioxidant power in minimally processed salad. Journal of Food Biochemistry, 32, 642–653.
- Doležalová, I., Duchoslav, M., & Dušek, K. (2013). Biology and yield of rocket (Eruca sativa Mill.) under field conditions of the Czech Republic (Central Europe). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41, 530–537.
- Engström, M. T., Pälijärvi, M., & Salminen, J. P., (2015). Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin‑, kaempferol- and myricetin-based flavonol glycosides by uplc-qqq-ms/ms. Journal of Agricultural and Food Chemistry, 63, 4068–4079.
- Heimler, D., Isolani, L., Vignolini, P., Tombelli, S., & Romani, A. (2007). Polyphenol content and antioxidative activity in some species of freshly consumed salads. Journal of Agricultural and Food Chemistry, 55, 1724–1729.
- Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.
- Julkunen-Tiitto, R., Nenadis, N., Neugart, S., Robson, M., Agati, G., Vepsäläinen, J., Zipoli, G., … Jansen, M. A. K. (2015). Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochemistry Reviews, 14, 273–297.
- Khoobchandani, M., Ganesh, N., Gabbanini, S., Valgimigli, L., & Srivastava, M. M. (2011). Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth. Fitoterapia, 82, 647–653.
- Kim, S. J., & Ishii, G. (2006). Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Science and Plant Nutrition, 52, 394–400.
- Llorach, R., Tomás-Barberán, F. A., & Ferreres, F. (2004). Lettuce and chicory byproducts as a source of antioxidant phenolic extracts. Journal of Agricultural and Food Chemistry, 52, 5109–5116.
- Martínez-Sánchez, A., Gil-Izquierdo, A., Gil, M. I., & Ferreres, F. (2008). A comparative study of flavonoid compounds, vitamin c, and antioxidant properties of baby leaf Brassicaceae species. Journal of Agricultural and Food Chemistry, 56, 2330–2340.
- Martínez-Sánchez, A., Marín, A., Llorach, R., Ferreres, F., & Gil, M. I. (2005). Controlled atmosphere preserves quality and phytonutrients in wild rocket (Diplotaxis tenuifolia). Postharvest Biology and Technology, 40, 26–33.
- Marton, M. R., & Lavric, V. (2013). A simple method for the quantification of isothiocyanates from mustard. UPB Scientific Bulletin, 75, 63–72.
- Matusheski, N. V., Juvik, J. A., & Jeffery, E. H. (2004). Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry, 65, 1273–1281.
- Melchini, A., Costa, C., Traka, M., Miceli, N., Mithen, R., Pasquale, R. D., & Trovato, A. (2009). Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells. Food and Chemical Toxicology, 47, 1430–1436.
- Pasini, F., Verardo, V., Caboni, M. F., & D'antuono, L. F. (2012). Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chemistry, 133, 1025–1033.
- Pathana, A. K., Bond, J., & Gaskina, R. E. (2009). Sample preparation for SEM of plant surfaces. Materials Today, 12, 32–43.
- Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53, 4290–4302.
- Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering, 49, 311–319.
- Schaich, K. M., & X. Tian, J. X. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111–125.
- Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Dek, M. S. P., & Hairuddin, M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12, 4678–4692.
- Tang, L., Paonessa, J. D., Zhang, Y., Ambrosone, C. B., & McCann, S. E. (2013). Total isothiocyanate yield from raw cruciferous vegetables commonly consumed in the United States. Journal of Functional Foods, 5, 1996–2001.
-
Velasco, P.,
Francisco, M., &
Cartea, M. E. (2010). Glucosinolates in Brassica and Cancer. In R. R. Watson & V. R. Preedy (Eds.), Bioactive foods and extracts: Cancer treatment and prevention (pp. 3–29). CRC Press.
10.1201/b10330-3 Google Scholar
- Xie, J., & Schaich, K. M. (2014). Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. Journal of Agricultural and Food Chemistry, 62, 4251–4260.
- Yaniv, Z., Schafferman, D., & Amar, Z. (1998). Tradition, uses and biodiversity of rocket (Eruca sativa, Brassicaceae) in Israel. Economic Botany, 52, 394–400.
- Zainol, M. K. M., Abdul-Hamid, A., Bakar, F. A., & Dek, S. P. (2009). Effect of different drying methods on the degradation of selected flavonoids in Centella asiatica. International Food Research Journal, 16, 531–537.
- Zhang, Y., Wade, K. L., Prestera, T., & Talalay, P. (1996). Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Analytical Biochemistry, 239, 160–167.