Influence of Processing in the Phenolic Composition and Health-Promoting Properties of Lentils (Lens culinaris L.)
A. López
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorT. El-Naggar
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
National Research Center, Cairo, Egypt
Search for more papers by this authorM. Dueñas
Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
Search for more papers by this authorCorresponding Author
T. Ortega
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Corresponding author. TEL: +34913941871; FAX: +34913941726; EMAIL: [email protected]Search for more papers by this authorI. Estrella
Instituto de Ciencia y Tecnología de Alimentos y Nutrición (CSIC), Madrid, Spain
Search for more papers by this authorT. Hernández
Instituto de Ciencia y Tecnología de Alimentos y Nutrición (CSIC), Madrid, Spain
Search for more papers by this authorM.P. Gómez-Serranillos
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorO.M. Palomino
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorM.E. Carretero
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorA. López
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorT. El-Naggar
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
National Research Center, Cairo, Egypt
Search for more papers by this authorM. Dueñas
Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
Search for more papers by this authorCorresponding Author
T. Ortega
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Corresponding author. TEL: +34913941871; FAX: +34913941726; EMAIL: [email protected]Search for more papers by this authorI. Estrella
Instituto de Ciencia y Tecnología de Alimentos y Nutrición (CSIC), Madrid, Spain
Search for more papers by this authorT. Hernández
Instituto de Ciencia y Tecnología de Alimentos y Nutrición (CSIC), Madrid, Spain
Search for more papers by this authorM.P. Gómez-Serranillos
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorO.M. Palomino
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorM.E. Carretero
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, 28040 Spain
Search for more papers by this authorAbstract
Lentils (Lens culinaris L.) are a source of polyphenolic compounds with health-promoting properties, but cooking processes before consumption cause hydrolytic reactions, endogenous enzymes and biochemical metabolism activation which could interfere with their positive physiological effects. The aim of this study was to assess the influence of boiling and germination in the phenolic content and composition of marketed lentils by liquid chromatography analysis and thus, to evaluate its impact on the neuroprotective and anticancer properties through cell culture assays. The protective effect toward astrocyte culture when submitted to an oxidant injury remained after processing while a decrease in the antioxidant activity by oxygen radical absorbing capacity assay and DPPH methods was detected. Every sample was cytotoxic on the assayed cancer cell lines, the strongest antiproliferative activity being for germinated lentils on melanoma cell line. In conclusion, processing of lentils led to significant chemical modifications in the polyphenolic content without significant influence on its healthy properties.
Practical Applications
This study assesses the influence of two cooking processes for legumes, boiling and germination, in the phenolic content and composition of lentils and its impact on health promoting properties mainly mediated by antioxidant activity. Both processes caused significant changes in the chemical composition which was reflected as a decrease in the antioxidant in vitro activity while neuroprotective effect remained. Every sample showed antitumoral activity toward the assayed cell lines, the strongest antiproliferative activity being obtained for germinated lentils on melanoma cell line. In conclusion, processing lentils before human consumption does not decrease the health-promoting properties of this legume. Further studies to obtain food derivatives with a right balance among palatability, digestibility and antioxidant ability are desirable.
References
- Aguilera, Y., Dueñas, M., Estrella, I., Hernández, T., Benítez, V., Esteban, R.M. and Martín-Cabrejas, M.A. 2010. Evaluation of phenolic profile and antioxidant properties of pardina lentil as affected by industrial dehydration. J. Agric. Food Chem. 58, 10101–10108.
- Aguilera, Y., Estrella, I., Benítez, V., Esteban, R.M. and Martín-Cabrejas, M.A. 2011. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 44, 774–780.
- Aguilera, Y., Liébana, R., Herrera, T., Rebollo-Hernanz, M., Sanchez-Puelles, C., Benítez, V. and Martín-Cabrejas, M.A. 2014. Effect of illumination on the content of melatonin, phenolic compounds, and antioxidant activity during germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 62, 10736–10743.
- Amarowicz, R., Estrella, I., Hernández, T., Dueñas, M., Troszynska, A., Kosinska, A. and Pegg, R.B. 2009. Antioxidant activity of red lentils extracts and its fractions. Int. J. Mol. Sci. 10, 5513–5527.
- Amarowicz, R. and Pegg, R.B. 2008. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110, 865–878.
- Aparicio-Fernández, X., Reynoso-Camacho, R., Castaño-Tostado, E., García-Gasca, T., González De Mejía, E., Guzmán-Maldonado, S.H., Elizondo, G., Yousef, G.G., Lila, M.A. and Loarca-Pina, G. 2008. Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. Plant Foods Hum. Nutr. 63, 35–40.
- Aune, D., De Stefani, E., Ronco, A., Boffetta, P., Deneo-Pellegrini, H., Acosta, G. and Mendilaharsu, M. 2009. Legume intake and the risk of cancer: A multisite case-control study in Uruguay. Cancer Causes Control 20, 1605–1615.
- Bigford, G.E. and Del Rossi, G. 2014. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv. Nutr. 5, 394–403.
- Boudjou, S., Oomah, B.D., Zaidi, F. and Hosseinian, F. 2013. Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chem. 138, 1543–1550.
- Dueñas, M., Hernández, T. and Estrella, I. 2002. Phenolic composition of the cotyledon and the seed coat of two varieties of lentils (Lens culinaris L.). Eur. Food Res. Technol. 215, 478–483.
- Dueñas, M., Hernández, T. and Estrella, I. 2006. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 98, 95–103.
- Dueñas, M., Hernández, T., Estrella, I. and Fernández, D. 2009. Germination as a process to increase the polyphenols content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem. 117, 599–607.
- Dueñas, M., Sun, B., Hernández, T., Estrella, I. and Spranger, I. 2003. Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L). J. Agric. Food Chem. 51, 7999–8004.
- Emerit, J., Edeas, M. and Bricaire, F. 2004. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58, 39–46.
- Faris, M.A., Takruri, H.R., Shomaf, M.S. and Bustanji, Y.K. 2009. Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr. Res. 29, 355–362.
- Fernández-Orozco, R., Piskula, M., Zielinski, H., Kowloska, H., Frías, J. and Vidal-Valverde, C. 2006. Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur. Food Res. Technol. 223, 495–502.
- Guajardo-Flores, D., Serna-Saldívar, S.O. and Gutiérrez-Uribe, J.A. 2013. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 141, 1497–1503.
- Huang, D., Ou, B. and Prior, R.L. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856.
- Jomova, K., Vondrakova, D., Lawson, M. and Valko, M. 2010. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem. 345, 91–104.
- Kite, G.C., Veitch, N.C., Boalch, M.E., Lewis, G.P., Leon, C.J. and Simmonds, M.S. 2009. Flavonol tetraglycosides from fruits of Styphnolobium japonicum (Leguminosae) and the authentication of Fructus sophorae and Flos sophorae. Phytochemistry 70, 785–794.
- Kite, G., Rowe, E., Lewis, G. and Veitch, N. 2011. Acylated flavonol tri- and tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae). Phytochemistry 72, 372–384.
- Lin, P.-Y. and Lai, H.-M. 2006. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem. 54, 3807–3814.
- López, A., El-Naggar, T., Dueñas, M., Ortega, T., Estrella, I., Hernández, T., Gomez-Serranillos, P., Palomino, O. and Carretero, M.E. 2013. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 138, 547–555.
- López-Amorós, M.L., Hernández, T. and Estrella, I. 2006. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal. 19, 277–283.
- Markham, K.R. 1982. Techniques of Flavonoid Identification, pp. 36–51, Academic Press, London, UK.
- Martínez-Villaluenga, C., Kuo, Y., Lambein, F., Frías, J. and Vidal-Valverde, C. 2006. Kinetics of free protein amino acids, free non-protein amino acids and trigonelline in soybean (Glycine max L.) and lupin (Lupinus angustifolius L.) sprouts. Eur. Food Res. Technol. 224, 177–186.
- Mastromatteo, M., Danza, A., Lecce, L., Spinelli, S., Lampignano, V., Laverse, J., Conte, A. and Del Nobile, M.A. 2015. Nutritional and physicochemical characteristics of wholemeal bread enriched with pea flour. Int. J. Food Sci. Technol. 50, 92–102. doi: 10.1111/ijfs.12636.
- Molyneux, P. 2004. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 26, 211–219.
- Monks, A., Scudeiro, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., et al. 1991. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Nat. Cancer Inst. 83, 757–766.
- Pinelo, M., Manzocco, L., Nuñez, M.J. and Nicoli, M.C. 2004. Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. J. Agric. Food Chem. 52, 1177–1180.
- Randhir, R., Kwon, Y.I. and Shetty, K. 2007. Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Sci. Emerging Technol. 9, 355–364.
- Sánchez-Moreno, C. 2002. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 8, 121–137.
- Sandoval-Acuña, C., Ferreira, J. and Speisky, H. 2014. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys. 559, 75–90.
- Saura-Calixto, F. 2012. Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. J. Agric. Food Chem. 60, 11195–11200.
- Shevkani, K. and Singh, N. 2014. Relationship between protein characteristics and film-forming properties of kidney bean, field pea and amaranth protein isolates. Int. J. Food Sci. Technol. 50, 1033–1043. doi: 10.1111/ijfs.12733
- Siddhuraju, P. 2006. The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia) (Jacq.) Marechal seed extracts. Food Chem. 99, 149–157.
- Sila, D.N., Smout, C., Elliot, F., Van Loey, A. and Hendrickx, M. 2006. Non-enzymatic depolymerization of carrot pectin: Toward a better understanding of carrot texture during thermal processing. J. Food Sci. 71, E1–E9.
- Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178.
- Steinbrenner, H. and Sies, H. 2013. Selenium homeostasis and antioxidant selenoproteins in brain: Implications for disorders in the central nervous system. Arch. Biochem. Biophys. 536, 152–157.
- Sueishi, Y., Ishikawa, M., Yoshioka, D., Endoh, N., Oowada, S., Shimmei, M., Fujii, H. and Kotake, Y. 2012. Oxygen radical absorbance capacity (ORAC) of cyclodextrin-solubilized flavonoids, resveratrol and astaxanthin as measured with the ORAC-EPR method. J. Clin. Biochem. Nutr. 50, 127–132.
- Takahashi, S., Abe, T., Gotoh, J. and Fukuuchi, Y. 2002. Substrate-dependence of reduction of MTT: A tetrazolium dye differs in cultured astroglia and neurons. Neurochem. Int. 40, 441–448.
- Tapias, V., Cannon, J.R. and Greenamyre, J.T. 2013. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol. Aging 35, 1162–1176.
- Thompson, M.D., Mensack, M.M., Jiang, W., Zhu, Z., Lewis, M.R., Mcginley, J.N., Brick, M.A. and Thompson, H.J. 2012. Cell signaling pathways associated with a reduction in mammary cancer burden by dietary common bean (Phaseolus vulgaris L.). Carcinogenesis 33, 226–232.
- Tiwari, V., Guan, Y. and Raja, S.N. 2014. Modulating the delicate glial-neuronal interactions in neuropathic pain: Promises and potential caveats. Neurosci. Biobehav. Rev. 45, 19–27.
- Troszynska, A., Estrella, I., Lamparski, G.A., Hernández, T., Amarowicz, R. and Pegg, R.B. 2011. Relationship between the sensory quality of lentil (Lens culinaris) sprouts and their phenolic constituents. Food Res. Int. 44, 3195–3201.
- Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2, 1231–1246.
- Turkmen, N., Sari, F. and Velioglu, Y.S. 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93, 713–718.
- Urbano, G., López-Jurado, M., Frejnagel, S., Gómez-Villalba, E., Porres, J., Frías, J., Vidal-Valverde, C. and Aranda, P. 2005. Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition 21, 230–239.
- Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. 2006. Free radicals, metals and antioxidants in oxidative-stress-induced-cancer. Chem. Biol. Interact. 160, 1–40.
-
Veitch, N.C. and
Grayer, R.J. 2006. Chalcones, dihydrochalcones and aurones. In Flavonoids: Chemistry, Biochemistry and Applications ( Ø.M. Andersen and K.R. Markham, eds.) pp. 1003–1100, CRC Press, Boca Raton, FL. doi: 10.1201/9781420039443.ch16.
10.1201/9781420039443.ch16 Google Scholar
- Wang, H. and Joseph, J.A. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612–616.
- Xu, B. and Chang, S.K.C. 2008. Effect of soaking, boiling and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 110, 1–13.
- Zielinski, H., Frías, J., Piskula, M., Kozlowska, H. and Vidal-Valverde, C. 2006. The effect of germination process on the superoxide dismutase-like activity and thiamine, riboflavin and mineral contents of rapeseeds. Food Chem. 99, 516–520.
- Zou, Y., Chang, S.K., Gu, Y. and Qian, S.Y. 2011. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 59, 2268–2276.