GLP-1 and insulin regulation of skeletal and cardiac muscle microvascular perfusion in type 2 diabetes
GLP-1和胰岛素对2型糖尿病骨骼肌和心肌微血管灌注的调节作用
Kaitlin M. Love
Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
Search for more papers by this authorJia Liu
Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
Search for more papers by this authorJudith G. Regensteiner
Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado, USA
Department of Medicine, University of Colorado, Aurora, Colorado, USA
Search for more papers by this authorJane E.B. Reusch
Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado, USA
Department of Medicine, University of Colorado, Aurora, Colorado, USA
Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
Search for more papers by this authorCorresponding Author
Zhenqi Liu
Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
Correspondence
Zhenqi Liu, Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, P.O. Box 801410, Charlottesville, VA 22908.
Email: [email protected]
Search for more papers by this authorKaitlin M. Love
Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
Search for more papers by this authorJia Liu
Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
Search for more papers by this authorJudith G. Regensteiner
Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado, USA
Department of Medicine, University of Colorado, Aurora, Colorado, USA
Search for more papers by this authorJane E.B. Reusch
Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado, USA
Department of Medicine, University of Colorado, Aurora, Colorado, USA
Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
Search for more papers by this authorCorresponding Author
Zhenqi Liu
Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
Correspondence
Zhenqi Liu, Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, P.O. Box 801410, Charlottesville, VA 22908.
Email: [email protected]
Search for more papers by this authorFunding information: National Heart, Lung, and Blood Institute, Grant/Award Number: R01HL094722; National Institute of Diabetes and Digestive and Kidney Diseases, Grant/Award Numbers: F32DK121431, R01DK102359; American Diabetes Association, Grant/Award Number: 1-17-ICTS-059
Abstract
enMuscle microvasculature critically regulates skeletal and cardiac muscle health and function. It provides endothelial surface area for substrate exchange between the plasma compartment and the muscle interstitium. Insulin fine-tunes muscle microvascular perfusion to regulate its own action in muscle and oxygen and nutrient supplies to muscle. Specifically, insulin increases muscle microvascular perfusion, which results in increased delivery of insulin to the capillaries that bathe the muscle cells and then facilitate its own transendothelial transport to reach the muscle interstitium. In type 2 diabetes, muscle microvascular responses to insulin are blunted and there is capillary rarefaction. Both loss of capillary density and decreased insulin-mediated capillary recruitment contribute to a decreased endothelial surface area available for substrate exchange. Vasculature expresses abundant glucagon-like peptide 1 (GLP-1) receptors. GLP-1, in addition to its well-characterized glycemic actions, improves endothelial function, increases muscle microvascular perfusion, and stimulates angiogenesis. Importantly, these actions are preserved in the insulin resistant states. Thus, treatment of insulin resistant patients with GLP-1 receptor agonists may improve skeletal and cardiac muscle microvascular perfusion and increase muscle capillarization, leading to improved delivery of oxygen, nutrients, and hormones such as insulin to the myocytes. These actions of GLP-1 impact skeletal and cardiac muscle function and systems biology such as functional exercise capacity. Preclinical studies and clinical trials involving the use of GLP-1 receptor agonists have shown salutary cardiovascular effects and improved cardiovascular outcomes in type 2 diabetes mellitus. Future studies should further examine the different roles of GLP-1 in cardiac as well as skeletal muscle function.
摘要
zh肌肉微血管系统对骨骼肌和心肌的健康和功能起着至关重要的调节作用。它为血浆间隙和肌肉间质之间的底物交换提供内皮表面积。胰岛素微调肌肉微血管灌注, 以调节自身在肌肉中的活动, 并为肌肉提供氧气和营养。具体地说, 胰岛素增加了肌肉微血管灌注, 使得更多的胰岛素转运到毛细血管周边的肌肉细胞, 然后通过其自身的透皮转运到达肌肉间质。在2型糖尿病中, 肌肉微血管对胰岛素的反应迟钝, 毛细血管稀疏。毛细血管密度的减少和胰岛素介导的毛细血管募集的降低, 都会导致可用于底物交换的内皮表面积减少。血管系统表达丰富的胰高血糖素样肽-1(GLP-1)受体。GLP-1可以改善内皮功能, 增加肌肉微血管灌注, 并刺激血管生成。重要的是, 这些作用在胰岛素抵抗状态下得以保留。因此, 使用GLP-1受体激动剂治疗胰岛素抵抗患者, 可能会改善骨骼肌和心肌微血管灌注, 增加肌肉的毛细血管, 从而改善氧、营养物质和胰岛素等激素向心肌细胞的输送。GLP-1的这些作用影响骨骼肌和心肌功能以及生物系统, 如功能性运动能力。涉及使用GLP-1受体激动剂的临床前研究和临床试验已经显示了有益的心血管效应, 并改善了2型糖尿病的心血管结局。未来的研究应该进一步研究GLP-1在心肌和骨骼肌功能中的不同作用
REFERENCES
- 1Ferrannini E, Simonson DC, Katz LD, et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism. 1988; 37: 79-85.
- 2DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985; 76: 149-155.
- 3Barrett E, Eggleston E, Inyard A, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009; 52: 752-764.
- 4Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011; 301: E252-E263.
- 5Honig CR, Odoroff CL, Frierson JL. Active and passive capillary control in red muscle at rest and in exercise. Am J Physiol. 1982; 243: H196-H206.
- 6Baron AD. Hemodynamic actions of insulin. Am J Physiol Endocrinol Metab. 1994; 267: E187-E202.
- 7Yang YJ, Hope ID, Ader M, Bergman RN. Insulin transport across capillaries is rate limiting for insulin action in dogs. J Clin Invest. 1989; 84: 1620-1628.
- 8Herkner H, Klein N, Joukhadar C, et al. Transcapillary insulin transfer in human skeletal muscle. Eur J Clin Invest. 2003; 33: 141-146.
- 9Holmäng A, Mimura K, Björntorp P, Lsönroth P. Interstitial muscle insulin and glucose levels in normal and insulin-resistant Zucker rats. Diabetes. 1997; 46: 1799-1804.
- 10Castillo C, Bogardus C, Bergman R, Thuillez P, Lillioja S. Interstitial insulin concentrations determine glucose uptake rates but not insulin resistance in lean and obese men. J Clin Invest. 1994; 93: 10-16.
- 11Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994; 94: 1172-1179.
- 12Vincent MA, Clerk LH, Lindner JR, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004; 53: 1418-1423.
- 13Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab. 2003; 285: E123-E129.
- 14Jayaweera AR, Wei K, Coggins M, Bin JP, Goodman C, Kaul S. Role of capillaries in determining CBF reserve: new insights using myocardial contrast echocardiography. Am J Physiol Heart Circ Physiol. 1999; 277: H2363-H2372.
- 15Laine H, Nuutila P, Luotolahti M, et al. Insulin-induced increment of coronary flow reserve is not abolished by dexamethasone in healthy young men. J Clin Endocrinol Metab. 2000; 85: 1868-1873.
- 16Laine H, Sundell J, Nuutila P, et al. Insulin induced increase in coronary flow reserve is abolished by dexamethasone in young men with uncomplicated type 1 diabetes. Heart. 2004; 90: 270-276.
- 17Jagasia D, Whiting JM, Concato J, Pfau S, McNulty PH. Effect of non-insulin-dependent diabetes mellitus on myocardial insulin responsiveness in patients with ischemic heart disease. Circulation. 2001; 103: 1734-1739.
- 18Sundell J, Laine H, Nuutila P, et al. The effects of insulin and short-term hyperglycaemia on myocardial blood flow in young men with uncomplicated Type I diabetes. Diabetologia. 2002; 45: 775-782.
- 19Sundell J, Nuutila P, Laine H, et al. Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes. 2002; 51: 1125-1130.
- 20Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998; 97: 473-483.
- 21Wei K, Skyba DM, Firschke C, Jayaweera AR, Lindner JR, Kaul S. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol. 1997; 29: 1081-1088.
- 22Liu Z. Insulin at physiological concentrations increases microvascular perfusion in human myocardium. Am J Physiol Endocrinol Metab. 2007; 293: E1250-E1255.
- 23Liu J, Jahn LA, Fowler DE, Barrett EJ, Cao W, Liu Z. Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans. J Clin Endocrinol Metab. 2011; 96: 438-446.
- 24Chai W, Liu J, Jahn LA, Fowler DE, Barrett EJ, Liu Z. Salsalate attenuates free fatty acid-induced microvascular and metabolic insulin resistance in humans. Diabetes Care. 2011; 34: 1634-1638.
- 25Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996; 97: 2601-2610.
- 26Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997; 100: 1230-1239.
- 27Hogikyan RV, Galecki BP, Halter JB, Greene DA, Supiano MA. Specific impairment of endothelium-dependent vasodilation in subjects with type 2 diabetes independent of obesity. J Clin Endocrinol Metab. 1998; 83: 1946-1952.
- 28Preik M, Kelm M, Rösen P, Tschöpe D, Strauer BE. Additive effect of coexistent type 2 diabetes and arterial hypertension on endothelial dysfunction in resistance arteries of human forearm vasculature. Angiology. 2000; 51: 545-554.
- 29Clerk LH, Vincent MA, Barrett EJ, Lankford MF, Lindner JR. Skeletal muscle capillary responses to insulin are abnormal in late-stage diabetes and are restored by angiogensin-converting enzyme inhibition. Am J Physiol Endocrinol Metab. 2007; 293: E1804-E1809.
- 30Wallis MG, Wheatley CM, Rattigan S, Barrett EJ, Clark ADH, Clark MG. Insulin-mediated hemodynamic changes are impaired in muscle of Zucker obese rats. Diabetes. 2002; 51: 3492-3498.
- 31Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006; 55: 1436-1442.
- 32Sundell J, Laine H, Luotolahti M, et al. Obesity affects myocardial vasoreactivity and coronary flow response to insulin. Obes Res. 2002; 10: 617-624.
- 33Liu J, Liu Z. Muscle insulin resistance and the inflamed microvasculature: fire from within. Int J Mol Sci. 2019; 20: 562.
- 34Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006; 116: 1793-1801.
- 35Youd JM, Rattigan S, Clark MG. Acute impairment of insulin-mediated capillary recruitment and glucose uptake in rat skeletal muscle in vivo by TNF-α. Diabetes. 2000; 49: 1904-1909.
- 36Wang N, Chai W, Zhao L, Tao L, Cao W, Liu Z. Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment. Am J Physiol Endocrinol Metab. 2013; 304: E538-E545.
- 37Liu Z, Liu J, Jahn LA, Fowler DE, Barrett EJ. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J Clin Endocrinol Metab. 2009; 94: 3543-3549.
- 38Scognamiglio R, Negut C, de Kreutzenberg SV, Tiengo A, Avogaro A. Effects of different insulin regimes on postprandial myocardial perfusion defects in type 2 diabetic patients. Diabetes Care. 2006; 29: 95-100.
- 39Scognamiglio R, Negut C, De Kreutzenberg SV, Tiengo A, Avogaro A. Postprandial myocardial perfusion in healthy subjects and in type 2 diabetic patients. Circulation. 2005; 112: 179-184.
- 40Jiang ZY, Lin Y-W, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999; 104: 447-457.
- 41J-a K, Koh KK, Quon MJ. The union of vascular and metabolic actions of insulin in sickness and in health. Arterioscler Thromb Vasc Biol. 2005; 25: 889-891.
- 42J-a K, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006; 113: 1888-1904.
- 43Potenza MA, Marasciulo FL, Chieppa DM, et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol. 2005; 289: H813-H822.
- 44Eringa EC, Stehouwer CDA, Merlijn T, Westerhof N, Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res. 2002; 56: 464-471.
- 45Eringa EC, Stehouwer CDA, van Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P. Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am J Physiol Heart Circ Physiol. 2004; 287: H2043-H2048.
- 46Zhao L, Fu Z, Wu J, et al. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity. Clin Sci. 2015; 129: 1025-1036.
- 47Liu Z. The vascular endothelium in diabetes and its potential as a therapeutic target. Rev Endocr Metab Disord. 2013; 14: 1-3.
- 48Gavin TP, Stallings HW, Zwetsloot KA, et al. Lower capillary density but no difference in VEGF expression in obese vs lean young skeletal muscle in humans. J Appl Physiol. 2005; 98: 315-321.
- 49Lillioja S, Young AA, Culter CL, et al. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest. 1987; 80: 415-424.
- 50Chung AWY, Hsiang YN, Matzke LA, McManus BM, van Breemen C, Okon EB. Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature. Circ Res. 2006; 99: 140-148.
- 51Frisbee JC. Obesity, insulin resistance, and microvessel density. Microcirculation. 2007; 14: 289-298.
- 52Solomon TPJ, Haus JM, Li Y, Kirwan JP. Progressive hyperglycemia across the glucose tolerance continuum in older obese adults is related to skeletal muscle capillarization and nitric oxide bioavailability. J Clin Endocrinol Metab. 2011; 96: 1377-1384.
- 53Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006; 7: 359-371.
- 54Tang K, Breen EC, Gerber H-P, Ferrara NMA, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004; 18: 63-69.
- 55Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP, Wasserman DH. Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance. Diabetes. 2013; 62: 572-580.
- 56Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res. 2007; 101: 948-956.
- 57Regensteiner JG, Bauer TA, Reusch JEB, et al. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. J Appl Physiol. 1998; 85: 310-317.
- 58Regensteiner JG, Sippel J, McFarling ET, Wolfel EE, Hiatt WR. Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Med Sci Sports Exerc. 1995; 27: 875-881.
- 59Nadeau KJ, Zeitler PS, Bauer TA, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009; 94: 3687-3695.
- 60Regensteiner JG, Bauer TA, Huebschmann AG, et al. Sex differences in the effects of type 2 diabetes on exercise performance. Med Sci Sports Exerc. 2015; 47: 58-65.
- 61Bauer TA, Reusch JEB, Levi M, Regensteiner JG. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care. 2007; 30: 2880-2885.
- 62Mason McClatchey P, Bauer TA, Regensteiner JG, Schauer IE, Huebschmann AG, Reusch JEB. Dissociation of local and global skeletal muscle oxygen transport metrics in type 2 diabetes. J Diabetes Complications. 2017; 31: 1311-1317.
- 63Cree-Green M, Scalzo RL, Harrall K, et al. Supplemental oxygen improves in vivo mitochondrial oxidative phosphorylation flux in sedentary obese adults with type 2 diabetes. Diabetes. 2018; 67: 1369-1379.
- 64Park SW, Goodpaster BH, Lee JS, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009; 32: 1993-1997.
- 65Liu Z, Barrett EJ. Human protein metabolism: its measurement and regulation. Am J Physiol Endocrinol Metab. 2002; 283: E1105-E1112.
- 66Liu Z, Long W, Hillier T, Saffer L, Barrett EJ. Insulin regulation of protein metabolism in vivo. Diab Nutr Metab. 1999; 12: 421-429.
- 67Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab. 2007; 293: E1289-E1295.
- 68Yu M, Moreno C, Hoagland KM, et al. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens. 2003; 21: 1125-1135.
- 69Chai W, Dong Z, Wang N, et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 2012; 61: 888-896.
- 70Subaran SC, Sauder MA, Chai W, et al. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin Sci (Lond). 2014; 127: 163-170.
- 71Dong Z, Chai W, Wang W, et al. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment. Am J Physiol Endocrinol Metab. 2013; 304: E222-E228.
- 72Chai W, Zhang X, Barrett EJ, Liu Z. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin's metabolic action in the presence of insulin resistance. Diabetes. 2014; 63: 2788-2799.
- 73Sjoberg KA, Holst JJ, Rattigan S, Richter EA, Kiens B. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014; 306: E355-E362.
- 74Aronis KN, Chamberland JP, Mantzoros CS. GLP-1 promotes angiogenesis in human endothelial cells in a dose-dependent manner, through the Akt, Src and PKC pathways. Metabolism. 2013; 62: 1279-1286.
- 75Erdogdu Ö, Nathanson D, Sjöholm Å, Nyström T, Zhang Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol. 2010; 325: 26-35.
- 76Kang H-M, Kang Y, Chun HJ, Jeong J-W, Park C. Evaluation of the in vitro and in vivo angiogenic effects of exendin-4. Biochem Biophys Res Commun. 2013; 434: 150-154.
- 77Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016; 24: 15-30.
- 78Tan AWK, Subaran SC, Sauder MA, et al. GLP-1 and insulin recruit muscle microvasculature and dilate conduit artery individually but not additively in healthy humans. J Endocr Soc. 2018; 2: 190-206.
- 79Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004; 110: 955-961.
- 80Nikolaidis LA, Elahi D, Shen Y-T, Shannon RP. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005; 289: H2401-H2408.
- 81Zhao T, Parikh P, Bhashyam S, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006; 317: 1106-1113.
- 82Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005; 54: 146-151.
- 83Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004; 109: 962-965.
- 84Gros R, You X, Baggio LL, et al. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology. 2003; 144: 2242-2252.
- 85Nystrom T. The potential beneficial role of glucagon-like peptide-1 in endothelial dysfunction and heart failure associated with insulin resistance. Horm Metab Res. 2008; 40: 593-606.
- 86Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014; 155: 1280-1290.
- 87Richards P, Parker HE, Adriaenssens AE, et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014; 63: 1224-1233.
- 88Wang N, Tan AWK, Jahn LA, et al. Vasodilatory actions of glucagon-like peptide 1 are preserved in skeletal and cardiac muscle microvasculature but not in conduit artery in obese humans with vascular insulin resistance. Diabetes Care. 2019; 43: 634-642.
- 89Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004; 287: E1209-E1215.
- 90Chai W, Fu Z, Aylor KW, Barrett EJ, Liu Z. Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high-fat diet-fed rats. Am J Physiol Endocrinol Metab. 2016; 311: E640-E648.
- 91Wang D, Luo P, Wang Y, et al. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism. Diabetes. 2013; 62: 1697-1708.
- 92Lambadiari V, Pavlidis G, Kousathana F, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol. 2018; 17: 8.
- 93Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375: 311-322.
- 94Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375: 1834-1844.
- 95Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018; 392: 1519-1529.
- 96Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019; 394: 121-130.
- 97Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015; 373: 2247-2257.
- 98Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017; 377: 1228-1239.
- 99Li Y, Rosenblit PD. Glucagon-like peptide-1 receptor agonists and cardiovascular risk reduction in type 2 diabetes mellitus: Is it a class effect? Curr Cardiol Rep. 2018; 20: 113.
- 100Dicembrini I, Nreu B, Scatena A, et al. Microvascular effects of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized controlled trials. Acta Diabetol. 2017; 54: 933-941.
- 101 Group TDCCTR. Early worsening of diabetic retinopathy in the diabetes control and complications trial. Arch Ophthalmol. 1998; 116: 874-886.
- 102le Roux CW, Astrup A, Fujioka K, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017; 389: 1399-1409.