Research progress on the encapsulation and sustained controlled-release of essential oils
Fengping Yi
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
Search for more papers by this authorYanfei Liu
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
Search for more papers by this authorChang Su
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
Search for more papers by this authorCorresponding Author
Zhaoteng Xue
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
Correspondence
Zhaoteng Xue, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
Email: [email protected]
Search for more papers by this authorFengping Yi
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
Search for more papers by this authorYanfei Liu
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
Search for more papers by this authorChang Su
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
Search for more papers by this authorCorresponding Author
Zhaoteng Xue
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
Correspondence
Zhaoteng Xue, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
Email: [email protected]
Search for more papers by this authorFengping Yi and Yanfei Liu should be considered joint first author.
Abstract
Essential oils (EOs) are volatile aromatic compounds derived from spice plants and fragrant animals. Its insecticidal, antioxidant, and antibacterial properties, among others, have a significant research value. However, the unstable components severely restrict the applications of essential oils. Therefore, selecting the appropriate encapsulating material and the controlled-release mechanism is crucial to provide the best bioavailability and stability of essential oils. At present, it has been reported that several encapsulating materials are being employed to release essential oils to alleviate the issue of instability and volatility. This study will summarize the frequently utilized encapsulating materials and controlled-release methods for essential oils in recent years and give insight into the further design of encapsulating systems, development of bioactivity, and expansion of essential oil application sectors.
Novelty impact statement
- Mesoporous silica and zeolites are being studied for use as encapsulating materials for essential oils.
- Natural encapsulating materials have applicability in the food industry.
- Light and temperature-stimulating responses are suitable for sustained controlled-release for essential oils.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data was created or analyzed in the study.
REFERENCES
- Adjali, A., Pontillo, A. R. N., Kavetsou, E., Katopodi, A., Tzani, A., Grigorakis, S., Loupassaki, S., & Detsi, A. (2022). Clove essential oil–hydroxypropyl-β-cyclodextrin inclusion complexes: Preparation, characterization and incorporation in biodegradable chitosan films. Micro, 2(1), 212–224. https://doi.org/10.3390/micro2010014
10.3390/micro2010014 Google Scholar
- Ahmad, A., Mubarak, N. M., Jannat, F. T., Ashfaq, T., Santulli, C., Rizwan, M., Najda, A., Bin-Jumah, M., Abdel-Daim, M. M., Hussain, S., & Ali, S. (2021). A critical review on the synthesis of natural sodium alginate based composite materials: An innovative biological polymer for biomedical delivery applications. Processes, 9(1), 137. https://doi.org/10.3390/pr9010137
- Ahmed, J., Mulla, M. Z., Al-Attar, H., & Jacob, H. (2022). Comparison of thermo-rheological, microstructural and antimicrobial properties of β- and γ-cyclodextrin inclusion complexes of cinnamon essential oil. Journal of Food Measurement and Characterization, 16, 3010-3022. https://doi.org/10.1007/s11694-022-01404-3
- Al-Moghazy, M., El-sayed, H. S., Salama, H. H., & Nada, A. A. (2021). Edible packaging coating of encapsulated thyme essential oil in liposomal chitosan emulsions to improve the shelf life of Karish cheese. Food Bioscience, 43, 101230. https://doi.org/10.1016/j.fbio.2021.101230
- Arabpoor, B., Yousefi, S., Weisany, W., & Ghasemlou, M. (2021). Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids, 111, 106394. https://doi.org/10.1016/j.foodhyd.2020.106394
- Arafa, A. A., Nada, A. A., Ibrahim, A. Y., Sajkiewicz, P., Zahran, M. K., & Hakeim, O. A. (2021). Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. International Journal of Biological Macromolecules, 182, 1820–1831. https://doi.org/10.1016/j.ijbiomac.2021.05.167
- Aravamudhan, A., Ramos, D. M., Nada, A. A., & Kumbar, S. G. (2014). Chapter 4-Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications. In S. G. Kumbar (Ed.), Natural and synthetic biomedical polymers (pp. 67–89). Elsevier Science.
10.1016/B978-0-12-396983-5.00004-1 Google Scholar
- Arya, P., Jelken, J., Lomadze, N., Santer, S., & Bekir, M. (2020). Kinetics of photo-isomerization of azobenzene containing surfactants. The Journal of Chemical Physics, 152(2), 024904. https://doi.org/10.1063/1.5135913
- Asdagh, A., Karimi Sani, I., Pirsa, S., Amiri, S., Shariatifar, N., Eghbaljoo-Gharehgheshlaghi, H., Shabahang, Z., & Taniyan, A. (2020). Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment, 29(1), 335–349. https://doi.org/10.1007/s10924-020-01882-w
- Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Habib, S. S., & Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: A comparative study. International Journal of Nanomedicine, 7, 6003–6009. https://doi.org/10.2147/IJN.S35347
- Banday, J. A., Rather, Z. U., Yatoo, G. N., Hajam, M. A., Bhat, S. A., Santhanakrishnan, V. P., Farozi, A., Rather, M. A., & Rasool, S. (2022). Gas chromatographic-mass spectrometric analysis, antioxidant, antiproliferative and antibacterial activities of the essential oil of Prangospabularia. Microbial Pathogenesis, 166, 105540. https://doi.org/10.1016/j.micpath.2022.105540
- Bashari, A., Hemmatinejad, N., & Pourjavadi, A. (2017). Smart and fragrant garment via surface modification of cotton fabric with cinnamon oil/stimuli responsive PNIPAAm/chitosan nano hydrogels. IEEE Transactions on Nanobioscience, 16(6), 455–462. https://doi.org/10.1109/TNB.2017.2710630
- Batul, R., Tamanna, T., Khaliq, A., & Yu, A. (2017). Recent progress in the biomedical applications of polydopamine nanostructures. Biomaterials Science, 5(7), 1204–1229. https://doi.org/10.1039/c7bm00187h
- Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232–239. https://doi.org/10.1016/j.jfoodeng.2011.05.023
- Bermudez-Oria, A., Rodriguez-Gutierrez, G., Rubio-Senent, F., Fernandez-Prior, A., & Fernandez-Bolanos, J. (2019). Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 148, 213–218. https://doi.org/10.1016/j.meatsci.2018.07.003
- Boukhatem, M. N., Kameli, A., & Saidi, F. (2013). Essential oil of Algerian rose-scented geranium (Pelargonium graveolens): Chemical composition and antimicrobial activity against food spoilage pathogens. Food Control, 34(1), 208–213. https://doi.org/10.1016/j.foodcont.2013.03.045
- Castaldo, R., Lama, G. C., Aprea, P., Gentile, G., Ambrogi, V., Lavorgna, M., & Cerruti, P. (2018). Humidity-driven mechanical and electrical response of graphene/cloisite hybrid films. Advanced Functional Materials, 29(14), 1807744. https://doi.org/10.1002/adfm.201807744
- Chen, X., Long, Q., Zhu, L., Lu, L. X., Sun, L. N., Pan, L., Lu, L. J., & Yao, W. R. (2019). A double-switch temperature-sensitive controlled release antioxidant film embedded with lyophilized nanoliposomes encapsulating rosemary essential oils for solid food. Materials (Basel), 12(23), 4011. https://doi.org/10.3390/ma12234011
- Cui, Y., Cheng, M., Han, M., Zhang, R., & Wang, X. (2021). Characterization and release kinetics study of potato starch nanocomposite films containing mesoporous nano-silica incorporated with Thyme essential oil. International Journal of Biological Macromolecules, 184, 566–573. https://doi.org/10.1016/j.ijbiomac.2021.06.134
- Dadras Chomachayi, M., Solouk, A., Akbari, S., Sadeghi, D., Mirahmadi, F., & Mirzadeh, H. (2018). Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: Thyme essential oil and doxycycline monohydrate release study. Journal of Biomedical Materials Research. Part A, 106(4), 1092–1103. https://doi.org/10.1002/jbm.a.36303
- Díaz-Zepeda, D., Peralta-Rodríguez, R. D., Puente-Urbina, B., Cortez-Mazatan, G., & Meléndez-Ortiz, H. I. (2020). pH responsive chitosan-coated microemulsions as drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(8), 549–560. https://doi.org/10.1080/00914037.2020.1857761
- Dinesh, D., Murugan, K., Subramaniam, J., Paulpandi, M., Chandramohan, B., Pavithra, K., Anitha, J., Vasanthakumaran, M., Fraceto, L. F., Wang, L., Shoiu-Hwang, J., & Dahms, H.-U. (2022). Chapter 11 - Salvia leucantha essential oil encapsulated in chitosan nanoparticles with toxicity and feeding physiology of cotton bollworm Helicoverpa armigera. In A. Rakshit, V. S. Meena, P. C. Abhilash, B. K. Sarma, H. B. Singh, L. Fraceto, M. Parihar, & A. K. Singh (Eds.), Biopesticides (pp. 159–181). Woodhead Publishing.
10.1016/B978-0-12-823355-9.00022-5 Google Scholar
- Ding, Y. H., Floren, M., & Tan, W. (2016). Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and Biotribology, 2(4), 121–136. https://doi.org/10.1016/j.bsbt.2016.11.001
- Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A., & Woolley, G. A. (2015). Red-shifting azobenzene photoswitches for in vivo use. Accounts of Chemical Research, 48(10), 2662–2670. https://doi.org/10.1021/acs.accounts.5b00270
- dos Santos, C., Buera, P., & Mazzobre, F. (2017). Novel trends in cyclodextrins encapsulation. Applications in food science. Current Opinion in Food Science, 16, 106–113. https://doi.org/10.1016/j.cofs.2017.09.002
- Ebadollahi, A., Jalali Sendi, J., Setzer, W. N., & Changbunjong, T. (2022). Encapsulation of Eucalyptus largiflorens essential oil by mesoporous silicates for effective control of the cowpea weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Molecules, 27(11), 3531. https://doi.org/10.3390/molecules27113531
- Emadzadeh, B., Ghorani, B., Naji-Tabasi, S., Charpashlo, E., & Molaveisi, M. (2021). Fate of β-cyclodextrin-sugar beet pectin microcapsules containing garlic essential oil in an acidic food beverage. Food Bioscience, 42, 101029. https://doi.org/10.1016/j.fbio.2021.101029
- Esmaeili, M., & Khodanazary, A. (2021). Effects of pectin/chitosan composite and bi-layer coatings combined with Artemisia dracunculus essential oil on the mackerel's shelf life. Journal of Food Measurement and Characterization, 15(4), 3367–3375. https://doi.org/10.1007/s11694-021-00879-w
- Feng, C., Jiaqiang, E., Han, W., Deng, Y., Zhang, B., Zhao, X., & Han, D. (2021). Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review. Renewable and Sustainable Energy Reviews, 144, 110954. https://doi.org/10.1016/j.rser.2021.110954
- Froiio, F., Mosaddik, A., Morshed, M. T., Paolino, D., Fessi, H., & Elaissari, A. (2019). Edible polymers for essential oils encapsulation: Application in food preservation. Industrial & Engineering Chemistry Research, 58(46), 20932–20945. https://doi.org/10.1021/acs.iecr.9b02418
- Gedikoglu, A. (2022). The effect of Thymus vulgaris and Thymbra spicata essential oils and/or extracts in pectin edible coating on the preservation of sliced bolognas. Meat Science, 184, 108697. https://doi.org/10.1016/j.meatsci.2021.108697
- Gil, E., & Hudson, S. (2004). Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 29(12), 1173–1222. https://doi.org/10.1016/j.progpolymsci.2004.08.003
- Gupta, P., Preet, S., Ananya, & Singh, N. (2022). Preparation of Thymus vulgaris (L.) essential oil nanoemulsion and its chitosan encapsulation for controlling mosquito vectors. Scientific Reports, 12(1), 4335. https://doi.org/10.1038/s41598-022-07676-5
- Himed, L., Merniz, S., Monteagudo-Olivan, R., Barkat, M., & Coronas, J. (2019). Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Scientific African, 6, e00181. https://doi.org/10.1016/j.sciaf.2019.e00181
10.1016/j.sciaf.2019.e00181 Google Scholar
- Hofmeister, I., Landfester, K., & Taden, A. (2014). pH-sensitive nanocapsules with barrier properties: Fragrance encapsulation and controlled release. Macromolecules, 47(16), 5768–5773. https://doi.org/10.1021/ma501388w
- Hu, J., Zhang, J., Li, L., Bao, X., Deng, W., & Chen, K. (2021). Chitosan-coated organosilica nanoparticles as a dual responsive delivery system of natural fragrance for axillary odor problem. Carbohydrate Polymers, 269, 118277. https://doi.org/10.1016/j.carbpol.2021.118277
- Hu, X., Liu, M., Cheng, Y., & Hu, J. (2022). Light-responsive mesoporous silica nanoparticles loaded with osmanthus fragrance for improving leather odor. ACS Applied Nano Materials, 5(1), 1317–1326. https://doi.org/10.1021/acsanm.1c03877
- Hurley, J. F., Smiley, E., & Isaacman-VanWertz, G. (2021). Modeled emission of hydroxyl and ozone reactivity from evaporation of fragrance mixtures. Environmental Science & Technology, 55(23), 15672–15679. https://doi.org/10.1021/acs.est.1c04004
- Jedli, H., Almoneef, M. M., Mbarek, M., Jbara, A., & Slimi, K. (2022). Adsorption of CO2 onto zeolite ZSM-5: Kinetic, equilibrium and thermodynamic studies. Fuel, 321, 124097. https://doi.org/10.1016/j.fuel.2022.124097
- Ji, W., Zhang, T., Lu, Z., Shen, J., Hu, J., Niu, Y., Xiao, Z., & Zhang, X. (2019). Mesoporous silica nanospheres with the ability of photo-driven releasing sandela 803 for the application to wallpaper. Chinese Chemical Letters, 30(3), 747–749. https://doi.org/10.1016/j.cclet.2018.09.015
- Jin, L., Teng, J., Hu, L., Lan, X., Xu, Y., Sheng, J., Song, Y., & Wang, M. (2019). Pepper fragrant essential oil (PFEO) and functionalized MCM-41 nanoparticles: Formation, characterization, and bactericidal activity. Journal of the Science of Food and Agriculture, 99(11), 5168–5175. https://doi.org/10.1002/jsfa.9776
- Ju, B., Yan, D., & Zhang, S. (2012). Micelles self-assembled from thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug delivery. Carbohydrate Polymers, 87(2), 1404–1409. https://doi.org/10.1016/j.carbpol.2011.09.028
- Kazemeini, H., Azizian, A., & Adib, H. (2021). Inhibition of Listeria monocytogenes growth in Turkey fillets by alginate edible coating with Trachyspermum ammi essential oil nano-emulsion. International Journal of Food Microbiology, 344, 109104. https://doi.org/10.1016/j.ijfoodmicro.2021.109104
- Khan, A. U. R., Huang, K., Jinzhong, Z., Zhu, T., Morsi, Y., Aldalbahi, A., El-Newehy, M., Yan, X., & Mo, X. (2020). PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation. Colloids and Surfaces. B, Biointerfaces, 196, 111352. https://doi.org/10.1016/j.colsurfb.2020.111352
- Kim, Y. M., Lee, K., Lee, Y., Yang, K., Choe, D., & Roh, Y. H. (2022). Thermoresponsive semi-interpenetrating gelatin-alginate networks for encapsulation and controlled release of scent molecules. International Journal of Biological Macromolecules, 208, 1096–1105. https://doi.org/10.1016/j.ijbiomac.2022.03.185
- Kord Heydari, M., Assadpour, E., Jafari, S. M., & Javadian, H. (2021). Encapsulation of rose essential oil using whey protein concentrate-pectin nanocomplexes: Optimization of the effective parameters. Food Chemistry, 356, 129731. https://doi.org/10.1016/j.foodchem.2021.129731
- Kringel, D. H., Antunes, M. D., Klein, B., Crizel, R. L., Wagner, R., de Oliveira, R. P., Dias, A. R. G., & Zavareze, E. D. R. (2017). Production, characterization, and stability of orange or eucalyptus essential oil/beta-cyclodextrin inclusion complex. Journal of Food Science, 82(11), 2598–2605. https://doi.org/10.1111/1750-3841.13923
- Kumar, K., & Paik, P. (2021). Protein immobilization on heterogeneous (SiO2/ZnO) hollow-mesoporous nanocapsules prepared by imprinting CPMV: Drug delivery and possibility of immunological applications. ACS Biomaterials Science & Engineering, 7(10), 4847–4858. https://doi.org/10.1021/acsbiomaterials.1c01043
- Lacroix, M., & Cooksey, K. (2005). 18 - Edible films and coatings from animal origin proteins. In J. H. Han (Ed.), Innovations in food packaging (pp. 301–317). Academic Press.
- Lan, W., Sun, Y., Chen, M., Li, H., Ren, Z., Lu, Z., & Xie, J. (2021). Effects of pectin combined with plant essential oils on water migration, myofibrillar proteins and muscle tissue enzyme activity of vacuum packaged large yellow croaker (Pseudosciaena crocea) during ice storage. Food Packaging and Shelf Life, 30, 100699. https://doi.org/10.1016/j.fpsl.2021.100699
- Lee, H., Choi, C. H., Abbaspourrad, A., Wesner, C., Caggioni, M., Zhu, T., & Weitz, D. A. (2016). Encapsulation and enhanced retention of fragrance in polymer microcapsules. ACS Applied Materials & Interfaces, 8(6), 4007–4013. https://doi.org/10.1021/acsami.5b11351
- Li, D., Wang, J., Peng, Z., Hu, Z., Li, W., Chen, C., Li, Y., & Zhang, Y. (2022). Adsorption of CdII by synthetic zeolite under multi-factor using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, 129165. https://doi.org/10.1016/j.colsurfa.2022.129165
- Li, J., Fu, J., Tian, X., Hua, T., Poon, T., Koo, M., & Chan, W. (2022). Characteristics of chitosan fiber and their effects towards improvement of antibacterial activity. Carbohydrate Polymers, 280, 119031. https://doi.org/10.1016/j.carbpol.2021.119031
- Liao, L., Yang, S., Li, R., Zhou, W., Xiao, Y., Yuan, Y., Cha, Y., He, G., & Li, J. (2022). Anti-inflammatory effect of essential oil from Amomum Tsaoko Crevost et Lemarie. Journal of Functional Foods, 93, 105087. https://doi.org/10.1016/j.jff.2022.105087
- Liu, H., Ni, Y., Hu, J., Jin, Y., Gu, P., Qiu, H., & Chen, K. (2022). Self-healing and antibacterial essential oil-loaded mesoporous silica/polyacrylate hybrid hydrogel for high-performance wearable body-strain sensing. ACS Applied Materials & Interfaces, 14, 21509–21520. https://doi.org/10.1021/acsami.2c03406
- Liu, M., Han, J., Yan, C., Guo, Z., Xiao, Z., & Zhu, W. H. (2019). Photocontrollable release with coumarin-based profragrances. ACS Applied Bio Materials, 2(9), 4002–4009. https://doi.org/10.1021/acsabm.9b00536
- Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057–5115. https://doi.org/10.1021/cr400407a
- Ma, J., Xu, W., Kou, X., Niu, Y., Xia, Y., Wang, Y., Tian, G., Zhao, Y., & Ke, Q. (2020). Green fabrication of control-released, washable, and nonadhesives aromatic-nanocapsules/cotton fabrics via electrostatic-adsorption/in situ immobilization. ACS Sustainable Chemistry & Engineering, 8(40), 15258–15267. https://doi.org/10.1021/acssuschemeng.0c05040
- Maleki, G., Woltering, E. J., & Mozafari, M. R. (2022). Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends in Food Science & Technology, 120, 88–99. https://doi.org/10.1016/j.tifs.2022.01.001
- Marturano, V., Bizzarro, V., Ambrogi, V., Cutignano, A., Tommonaro, G., Abbamondi, G. R., Giamberini, M., Tylkowski, B., Carfagna, C., & Cerruti, P. (2019). Light-responsive nanocapsule-coated polymer films for antimicrobial active packaging. Polymers (Basel), 11(1), 68. https://doi.org/10.3390/polym11010068
- Marturano, V., Bizzarro, V., De Luise, A., Calarco, A., Ambrogi, V., Giamberini, M., Tylkowski, B., & Cerruti, P. (2018). Essential oils as solvents and core materials for the preparation of photo-responsive polymer nanocapsules. Nano Research, 11(5), 2783–2795. https://doi.org/10.1007/s12274-017-1908-5
- Marturano, V., Marcille, H., Cerruti, P., Bandeira, N. A. G., Giamberini, M., Trojanowska, A., Tylkowski, B., Carfagna, C., Ausanio, G., & Ambrogi, V. (2019). Visible-light responsive nanocapsules for wavelength-selective release of natural active agents. ACS Applied Nano Materials, 2(7), 4499–4506. https://doi.org/10.1021/acsanm.9b00882
- Mei, S., Xu, X., Priestley, R. D., & Lu, Y. (2020). Polydopamine-based nanoreactors: Synthesis and applications in bioscience and energy materials. Chemical Science, 11(45), 12269–12281. https://doi.org/10.1039/d0sc04486e
- Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martinez-Manez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun antimicrobial films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles. Nanomaterials (Basel), 9(2), 227. https://doi.org/10.3390/nano9020227
- Miguel, S. P., Simoes, D., Moreira, A. F., Sequeira, R. S., & Correia, I. J. (2019). Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. International Journal of Biological Macromolecules, 121, 524–535. https://doi.org/10.1016/j.ijbiomac.2018.10.041
- Min, T., Sun, X., Yuan, Z., Zhou, L., Jiao, X., Zha, J., Zhu, Z., & Wen, Y. (2021). Novel antimicrobial packaging film based on porous poly(lactic acid) nanofiber and polymeric coating for humidity-controlled release of thyme essential oil. LWT, 135, 110034. https://doi.org/10.1016/j.lwt.2020.110034
- Mohammadi, A., Hosseini, S. M., & Hashemi, M. (2020). Emerging chitosan nanoparticles loading-system boosted the antibacterial activity of Cinnamomum zeylanicum essential oil. Industrial Crops and Products, 155, 112824. https://doi.org/10.1016/j.indcrop.2020.112824
- Musarurwa, H., & Tawanda Tavengwa, N. (2021). Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. Chemosphere, 266, 129222. https://doi.org/10.1016/j.chemosphere.2020.129222
- Ortiz, C. M., Salgado, P. R., Dufresne, A., & Mauri, A. N. (2018). Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocolloids, 79, 416–427. https://doi.org/10.1016/j.foodhyd.2018.01.011
- Pirone, D., Marturano, V., Del Pezzo, R., Fernandez Prieto, S., Underiner, T., Giamberini, M., & Tylkowski, B. (2019). Molecular design of microcapsule shells for visible light-triggered release. Polymers (Basel), 11(5), 904. https://doi.org/10.3390/polym11050904
- Poyatos-Racionero, E., Gonzalez-Alvarez, I., Sanchez-Moreno, P., Sitia, L., Gatto, F., Pompa, P. P., Aznar, E., González-Álvarez, M., Martínez-Máñez, R., Marcos, M. D., & Bernardos, A. (2021). Lactose-gated mesoporous silica particles for intestinal controlled delivery of essential oil components: An in vitro and in vivo study. Pharmaceutics, 13(7), 982. https://doi.org/10.3390/pharmaceutics13070982
- Poyatos-Racionero, E., Guari-Borras, G., Ruiz-Rico, M., Morella-Aucejo, A., Aznar, E., Barat, J. M., Martínez-Máñez, R., Marcos, M. D., & Bernardos, A. (2021). Towards the enhancement of essential oil components' antimicrobial activity using new zein protein-gated mesoporous silica microdevices. International Journal of Molecular Sciences, 22(7), 3795. https://doi.org/10.3390/ijms22073795
- Qiu, L., Zhang, M., Adhikari, B., & Chang, L. (2022). Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocolloids, 124, 107366. https://doi.org/10.1016/j.foodhyd.2021.107366
- Rafati, H., Talebpour, Z., Adlnasab, L., & Ebrahimi, S. N. (2009). Quality by design: Optimization of a liquid filled pH-responsive macroparticles using Draper-Lin composite design. Journal of Pharmaceutical Sciences, 98(7), 2401–2411. https://doi.org/10.1002/jps.21625
- Rafiq, M., Hussain, T., Abid, S., Nazir, A., & Masood, R. (2018). Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Materials Research Express, 5(3), 035007. https://doi.org/10.1088/2053-1591/aab0b4
- Rana, K., Kumar Pandey, S., Chauhan, S., & Preet, S. (2022). Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer. International Journal of Pharmaceutics, 620, 121744. https://doi.org/10.1016/j.ijpharm.2022.121744
- Richards, D. (2017). Effect of essential oil mouthwashes on plaque and gingivitis. Evidence-Based Dentistry, 18(2), 39–40. https://doi.org/10.1038/sj.ebd.6401233
- Rivaz, M., Rahpeima, M., Khademian, Z., & Dabbaghmanesh, M. H. (2021). The effects of aromatherapy massage with lavender essential oil on neuropathic pain and quality of life in diabetic patients: A randomized clinical trial. Complementary Therapies in Clinical Practice, 44, 101430. https://doi.org/10.1016/j.ctcp.2021.101430
- Sadadekar, A. S., Shruthy, R., Preetha, R., Kumar, N., Pande, K. R., & Nagamaniammai, G. (2022). Enhanced antimicrobial and antioxidant properties of Nano chitosan and pectin based biodegradable active packaging films incorporated with fennel (Foeniculum vulgare) essential oil and potato (Solanum tuberosum) peel extracts. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-021-05333-9
- Samanta, S., Beharry, A. A., Sadovski, O., McCormick, T. M., Babalhavaeji, A., Tropepe, V., & Woolley, G. A. (2013). Photoswitching azo compounds in vivo with red light. Journal of the American Chemical Society, 135(26), 9777–9784. https://doi.org/10.1021/ja402220t
- Sanchez, A., Garcia, M. C., Martin-Pinero, M. J., Munoz, J., & Alfaro-Rodriguez, M. C. (2021). Elaboration and characterization of nanoemulsion with orange essential oil and pectin. Journal of the Science of Food and Agriculture, 102, 3543–3550. https://doi.org/10.1002/jsfa.11698
- Šešlija, S., Nešić, A., Škorić, M. L., Krušić, M. K., Santagata, G., & Malinconico, M. (2018). Pectin/carboxymethylcellulose films as a potential food packaging material. Macromolecular Symposia, 378(1), 1600163. https://doi.org/10.1002/masy.201600163
10.1002/masy.201600163 Google Scholar
- Silva, F., Caldera, F., Trotta, F., Nerín, C., & Domingues, F. C. (2019). Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Innovative Food Science & Emerging Technologies, 56, 102177. https://doi.org/10.1016/j.ifset.2019.102177
- Skalickova, S., Aulichova, T., Venusova, E., Skladanka, J., & Horky, P. (2020). Development of pH-responsive biopolymeric nanocapsule for antibacterial essential oils. International Journal of Molecular Sciences, 21(5), 1799. https://doi.org/10.3390/ijms21051799
- Smaoui, S., Ben Hlima, H., Ben Braïek, O., Ennouri, K., Mellouli, L., & Mousavi Khaneghah, A. (2021). Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Science, 181, 108585. https://doi.org/10.1016/j.meatsci.2021.108585
- Su, C.-H., Chiu, H.-L., Chen, Y.-C., Yesilmen, M., Schulz, F., Ketelsen, B., Vossmeyer, T., & Liao, Y.-C. (2019). Highly responsive PEG/gold nanoparticle thin-film humidity sensor via inkjet printing technology. Langmuir, 35(9), 3256–3264. https://doi.org/10.1021/acs.langmuir.8b03433
- Sullivan, D. J., O'Mahony, T. F., Cruz-Romero, M. C., Cummins, E., Kerry, J. P., & Morris, M. A. (2021). The use of porous silica particles as carriers for a smart delivery of antimicrobial essential oils in food applications. ACS Omega, 6(45), 30376–30385. https://doi.org/10.1021/acsomega.1c03549
- Surendhiran, D., Roy, V. C., Park, J. S., & Chun, B. S. (2022). Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preservation. International Journal of Biological Macromolecules, 203, 650–660. https://doi.org/10.1016/j.ijbiomac.2022.01.178
- Suresh, U., Murugan, K., Panneerselvam, C., Aziz, A. T., Cianfaglione, K., Wang, L., & Maggi, F. (2020). Encapsulation of sea fennel (Crithmum maritimum) essential oil in nanoemulsion and SiO2 nanoparticles for treatment of the crop pest Spodoptera litura and the dengue vector Aedes aegypti. Industrial Crops and Products, 158, 113033. https://doi.org/10.1016/j.indcrop.2020.113033
- Tang, C., Li, Y., Pun, J., Mohamed Osman, A. S., & Tam, K. C. (2019). Polydopamine microcapsules from cellulose nanocrystal stabilized Pickering emulsions for essential oil and pesticide encapsulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 403–413. https://doi.org/10.1016/j.colsurfa.2019.03.049
- Tekin, R., & Bac, N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous and Mesoporous Materials, 234, 55–60. https://doi.org/10.1016/j.micromeso.2016.07.006
- Tekin, R., Bac, N., Warzywoda, J., & Sacco, A. (2015). Encapsulation of a fragrance molecule in zeolite X. Microporous and Mesoporous Materials, 215, 51–57. https://doi.org/10.1016/j.micromeso.2015.05.020
- Thuekeaw, S., Angkanaporn, K., Chirachanchai, S., & Nuengjamnong, C. (2021). Dual pH responsive via double - layered microencapsulation for controlled release of active ingredients in simulated gastrointestinal tract: A model case of chitosan-alginate microcapsules containing basil oil (Ocimum basilicum Linn.). Polymer Degradation and Stability, 191, 109660. https://doi.org/10.1016/j.polymdegradstab.2021.109660
- Vaughn, J., Wu, H., Efremovska, B., Olson, D. H., Mattai, J., Ortiz, C., Puchalski, A., Li, J., & Pan, L. (2013). Encapsulated recyclable porous materials: An effective moisture-triggered fragrance release system. Chemical Communications, 49(51), 5724–5726. https://doi.org/10.1039/c3cc41236a
- Vera, M., Mella, C., Palacio, D. A., & Urbano, B. F. (2021). Thermoresponsive polymer nanocomposites. In D. Brabazon (Ed.), Encyclopedia of materials: Composites (pp. 510–526). Elsevier.
10.1016/B978-0-12-819724-0.00051-3 Google Scholar
- Wadhwa, G., Kumar, S., Chhabra, L., Mahant, S., & Rao, R. (2017). Essential oil–cyclodextrin complexes: An updated review. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 89(1–2), 39–58. https://doi.org/10.1007/s10847-017-0744-2
- Wang, C., Pei, X., Tan, J., Zhang, T., Zhai, K., Zhang, F., Bai, Y., Deng, Y., Zhang, B., Wang, Y., Tan, Y., Xu, K., & Wang, P. (2020). Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release. International Journal of Biological Macromolecules, 146, 171–178. https://doi.org/10.1016/j.ijbiomac.2019.12.269
- Wang, L., Xu, J., Zhou, H., Yi, C., & Xu, W. (2009). Cis–trans isomerization mechanism of 4-aminoazobenzene in the S0 and S1 states: A CASSCF and DFT study. Journal of Photochemistry and Photobiology A: Chemistry, 205(2–3), 104–108. https://doi.org/10.1016/j.jphotochem.2009.04.014
- Wang, S., Jiang, D., Zhou, Z., Shen, Y., & Jiang, L. (2020). A novel photothermo-responsive nanocarrier for the controlled release of low-volatile fragrances. RSC Advances, 10(25), 14867–14876. https://doi.org/10.1039/c9ra10662f
- Wardana, A. A., Kingwascharapong, P., Wigati, L. P., Tanaka, F., & Tanaka, F. (2022). The antifungal effect against Penicillium italicum and characterization of fruit coating from chitosan/ZnO nanoparticle/Indonesian sandalwood essential oil composites. Food Packaging and Shelf Life, 32, 100849. https://doi.org/10.1016/j.fpsl.2022.100849
- Wei, L., Zhou, D., & Kang, X. (2021). Electrospinning as a novel strategy for the encapsulation of living probiotics in polyvinyl alcohol/silk fibroin. Innovative Food Science & Emerging Technologies, 71, 102726. https://doi.org/10.1016/j.ifset.2021.102726
- Wu, A., & Talham, D. R. (2000). Photoisomerization of Azobenzene chromophores in organic/inorganic zirconium phosphonate thin films prepared using a combined Langmuir−Blodgett and self-assembled monolayer deposition. Langmuir, 16(19), 7449–7456. https://doi.org/10.1021/la000407h
- Wu, K., Shi, Z., Liu, C., Su, C., Zhang, S., & Yi, F. (2022). Preparation of Pickering emulsions based on soy protein isolate-tannic acid for protecting aroma compounds and their application in beverages. Food Chemistry, 390, 133182. https://doi.org/10.1016/j.foodchem.2022.133182
- Xiao, Z., Kang, Y., Hou, W., Niu, Y., & Kou, X. (2019). Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. International Journal of Biological Macromolecules, 137, 132–138. https://doi.org/10.1016/j.ijbiomac.2019.06.178
- Xiao, Z., Liu, H., Zhao, Q., Niu, Y., & Zhao, D. (2022). Silk fibroin/polydopamine modified nanocapsules for high-performance adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 128951. https://doi.org/10.1016/j.colsurfa.2022.128951
- Xiao, Z., Liu, W., Zhu, G., Zhou, R., & Niu, Y. (2014). A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. Journal of the Science of Food and Agriculture, 94(8), 1482–1494. https://doi.org/10.1002/jsfa.6491
- Xue, F., Gu, Y., Wang, Y., Li, C., & Adhikari, B. (2019). Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocolloids, 96, 178–189. https://doi.org/10.1016/j.foodhyd.2019.05.014
- Zhai, Y., Whitten, J. J., Zetterlund, P. B., & Granville, A. M. (2016). Synthesis of hollow polydopamine nanoparticles using miniemulsion templating. Polymer, 105, 276–283. https://doi.org/10.1016/j.polymer.2016.10.038
- Zhang, H., Xu, C., & Fang, G. (2022). Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: A review. Solar Energy Materials and Solar Cells, 241, 111747. https://doi.org/10.1016/j.solmat.2022.111747
- Zhong, X., Gao, F., Wei, H., Zhou, H., & Zhou, X. (2021). Functionalization of Mesoporous silica as an effective composite carrier for essential oils with improved sustained release behavior and long-term antibacterial performance. Nanotechnology, 33(3), 035706. https://doi.org/10.1088/1361-6528/ac2fe2