Low methoxy feruloylated pectin from beetroot: Antioxidant and prebiotic properties
Swapna RamachandraRao Sonale
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorSaarika Pothuvan Kunnummal
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR, Ghaziabad, India
Search for more papers by this authorNidhi Sori
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorJeevan Prasad Reddy
Academy of Scientific and Innovative Research, CSIR, Ghaziabad, India
Department of Food Packaging Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorCorresponding Author
Mahejibin Khan
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR, Ghaziabad, India
Correspondence
Mahejibin Khan, Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, Karnataka 570020, India.
Email: [email protected]
Search for more papers by this authorSwapna RamachandraRao Sonale
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorSaarika Pothuvan Kunnummal
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR, Ghaziabad, India
Search for more papers by this authorNidhi Sori
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorJeevan Prasad Reddy
Academy of Scientific and Innovative Research, CSIR, Ghaziabad, India
Department of Food Packaging Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorCorresponding Author
Mahejibin Khan
Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR, Ghaziabad, India
Correspondence
Mahejibin Khan, Department of Microbiology and Fermentation Technology, CSIR - Central Food Technological Research Institute, Mysuru, Karnataka 570020, India.
Email: [email protected]
Search for more papers by this authorAbstract
Pectin was extracted from beetroot pulp by acid hydrolysis using two concentrations of acid, 0.05 M and 0.1 M HCl and designated BRP1 and BRP2, respectively. CHNS, FTIR, and DSC analyses confirmed the purity and characterized it as a low methoxyl (LM) pectin. DPPH (%) inhibition was 22 and 11 for BRP1 and BRP2 and antioxidant activity determined by FRAP assay was 51 μM TE/g and 15 μM TE/g for BRP1 and BRP2, respectively. BR pectin significantly (p ≤ .05) stimulated the growth of Limosilactobacillus fermentum compared with citrus pectin. The highest prebiotic activity score (0.75) was observed for BRP1, followed by BRP2 (0.66), BR pulp (0.26), and citrus pectin (0.09). In addition, L. fermentum produced a higher amount of SCFA with BRP1 and BRP2 compared to the control. These results confirmed the bioactive and health-promoting potential of BR pectin and hence can be used as an effective bioactive ingredient for various functional foods.
Novelty impact statement
- Extraction of low methoxy pectin was investigated using two different concentrations of acid.
- Structural and functional properties of pectin were influenced by acid extraction conditions.
- Both pectins contain feruloylated sugars that contribute to their antioxidant properties
- L. fermentum produced the highest amount of acetate with BRP1, whereas the highest amount of propionic acid and butyric acid was produced with BRP2.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Bacterial 16S rDNA sequence is submitted at NCBI under accession no. OK217198. FTIR and other raw data are available with the author and made available upon reasonable request.
REFERENCES
- Abou-Elseoud, W. S., Hassan, E. A., & Hassan, M. L. (2021). Extraction of pectin from sugar beet pulp by enzymatic and ultrasound-assisted treatments. Carbohydrate Polymer Technologies and Applications, 2, 100042. https://doi.org/10.1016/j.carpta.2021.100042
- Aina, V. O., Barau, M. M., Mamman, O. A., Zakari, A., Haruna, H., Umar, M. H., & Abba, Y. B. (2012). Extraction and characterization of pectin from peels of lemon (Citrus limon), grape fruit (Citrus paradisi) and sweet orange (Citrus sinensis). British Journal of Pharmacology and Toxicology, 3(6), 259–262.
- Bang, S.-J., Kim, G., Lim, M. Y., Song, E.-J., Jung, D.-H., Kum, J.-S., Nam, Y.-D., Park, C.-S., & Seo, D.-H. (2018). The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express, 8(1), 98. https://doi.org/10.1186/s13568-018-0629-9
- Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.
- Beukema, M., Faas, M. M., & de Vos, P. (2020). The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Experimental & Molecular Medicine, 52(9), 1364–1376. https://doi.org/10.1038/s12276-020-0449-2
- Chung, W. S. F., Meijerink, M., Zeuner, B., Holck, J., Louis, P., Meyer, A. S., Wells, J. M., Flint, H. J., & Duncan, S. H. (2017). Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiology Ecology, 93(11), fix127. https://doi.org/10.1093/femsec/fix127
- Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29(1), 3–23.
- Filisetti-Cozzi, T. M., & Carpita, N. C. (1991). Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 197(1), 157–162. https://doi.org/10.1016/0003-2697(91)90372-Z
- Fishman, M. L., Chau, H. K., Hoagland, P., & Ayyad, K. (1999). Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. Carbohydrate Research, 323(1–4), 126–138. https://doi.org/10.1016/S0008-6215(99)00244-X
- Fukunaga, T., Sasaki, M., Araki, Y., Okamoto, T., Yasuoka, T., Tsujikawa, T., Fujiyama, Y., & Bamba, T. (2003). Effects of the soluble fibre pectin on intestinal cell proliferation, fecal short chain fatty acid production and microbial population. Digestion, 67(1–2), 42–49. https://doi.org/10.1159/000069705
- Gharibzahedi, S. M. T., Smith, B., & Guo, Y. (2019). Ultrasound-microwave assisted extraction of pectin from fig (Ficus carica L.) skin: Optimization, characterization and bioactivity. Carbohydrate Polymers, 222, 114992. https://doi.org/10.1016/j.carbpol.2019.114992
- Gnanasambandam, R., & Proctor, A. (2000). Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry, 68(3), 327–332. https://doi.org/10.1016/S0308-8146(99)00191-0
- Grohman, K., Cameron, R., Kim, Y., Widmer, W., & Luzio, G. (2013). Extraction and recovery of pectic fragments from citrus processing waste for co–production with ethanol. Journal of Chemical Technology & Biotechnology, 88(3), 395–407. https://doi.org/10.1002/jctb.3859
- Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W., & Brumer, H. (2017). Polysaccharide utilization loci: Fueling microbial communities. Journal of Bacteriology, 199(15), e00860-16. https://doi.org/10.1128/JB.00860-16
- Hillis, W. E., & Swain, T. (1959). The phenolic constituents of Prunus domestica. II.—The analysis of tissues of the Victoria plum tree. Journal of the Science of Food and Agriculture, 10(2), 135–144. https://doi.org/10.1002/jsfa.2740100211
- Karbuz, P., & Tugrul, N. (2021). Microwave and ultrasound assisted extraction of pectin from various fruits peel. Journal of Food Science and Technology, 58(2), 641–650. https://doi.org/10.1007/s13197-020-04578-0
- Kazemi, M., Khodaiyan, F., Labbafi, M., Hosseini, S. S., & Hojjati, M. (2019). Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties. Food Chemistry, 271, 663–672. https://doi.org/10.1016/j.foodchem.2018.07.212
- Khan, M., Nakkeeran, E., & Umesh-Kumar, S. (2013). Potential application of pectinase in developing functional foods. Annual Review of Food Science and Technology, 4, 21–34. https://doi.org/10.1146/annurev-food-030212-182525
- Khan, M., & Nandkishor, M. (2019). Optimization of extraction condition and characterization of low methoxy pectin from wild plum. Journal of Packaging Technology and Research, 3(3), 215–221. https://doi.org/10.1007/s41783-019-00070-z
10.1007/s41783-019-00070-z Google Scholar
- Khawas, S., Nosáľová, G., Majee, S. K., Ghosh, K., Raja, W., Sivová, V., & Ray, B. (2017). In vivo cough suppressive activity of pectic polysaccharide with arabinogalactan type II side chains of Piper nigrum fruits and its synergistic effect with piperine. International Journal of Biological Macromolecules, 99, 335–342. https://doi.org/10.1016/j.ijbiomac.2017.02.093
- Knockaert, D., Raes, K., Wille, C., Struijs, K., & Van Camp, J. (2012). Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides. Journal of the Science of Food and Agriculture, 92(11), 2291–2296. https://doi.org/10.1002/jsfa.5623
- Larsen, N., Bussolo de Souza, C., Krych, L., Barbosa Cahú, T., Wiese, M., Kot, W., Hansen, K. M., Blennow, A., Venema, B. K., & Jespersen, L. (2019). Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Frontiers in Microbiology, 10, 223. https://doi.org/10.3389/fmicb.2019.00223
- Li, T., Chen, X., Huang, Z., Xie, W., Tong, C., Bao, R., Sun, X., Li, W., & Li, S. (2019). Pectin oligosaccharide from hawthorn fruit ameliorates hepatic inflammation via NF-κB inactivation in high-fat diet fed mice. Journal of Functional Foods, 57, 345–350. https://doi.org/10.1016/j.jff.2019.04.027
- Li, W., Zhang, K., & Yang, H. (2018). Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: Possible role of short-chain fatty acids and gut microbiota regulated by pectin. Journal of Agricultural and Food Chemistry, 66(30), 8015–8025. https://doi.org/10.1186/s13568-018-0629-9
- Lin, Q., Ou, S., & Wen, Q. (2014). In vitro antioxidant activity of feruloyl arabinose isolated from maize bran by acid hydrolysis. Journal of Food Science and Technology 2014, 51(7), 1356–1362.
- Liu, C., Du, P., Guo, Y., Xie, Y., Yu, H., Yao, W., Cheng, Y., & Qian, H. (2021). Extraction, characterization of aloe polysaccharides and in-depth analysis of its prebiotic effects on mice gut microbiota. Carbohydrate Polymers, 261, 117874.
- Liu, X., Le Bourvellec, C., & Renard, C. M. G. C. (2020). Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3574–3617. https://doi.org/10.1111/1541-4337.12632
- Markov, P. A., Popov, S. V., Nikitina, I. R., Ovodova, R. G., & Ovodov, Y. S. (2011). Anti-inflammatory activity of pectins and their galacturonan backbone. Russian Journal of Bioorganic Chemistry, 37(7), 817–821. https://doi.org/10.1134/S1068162011070132
- Maxwell, E. G., Colquhoun, I. J., Chau, H. K., Hotchkiss, A. T., Waldron, K. W., Morris, V. J., & Belshaw, N. J. (2016). Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydrate Polymers, 136, 923–929. https://doi.org/10.1016/j.carbpol.2015.09.063
- Mazzone, S. B. (2004). Sensory regulation of the cough reflex. Pulmonary Pharmacology & Therapeutics, 17(6), 361–368. https://doi.org/10.1016/j.pupt.2004.09.021
- Minzanova, S. T., Mironov, V. F., Arkhipova, D. M., Khabibullina, A. V., Mironova, L. G., Zakirova, Y. M., & Milyukov, V. A. (2018). Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers, 10(12), 1407. https://doi.org/10.3390/polym10121407
- Nosáľová, G., Prisenžňáková, Ľ., Košťálová, Z., Ebringerová, A., & Hromádková, Z. (2011). Suppressive effect of pectic polysaccharides from Cucurbita pepo L. var. styriaca on citric acid-induced cough reflex in Guinea pigs. Fitoterapia, 82(3), 357–364. https://doi.org/10.1016/j.fitote.2010.11.006
- Prado, S. B. R., Santos, G. R., Mour˜ao, P., & Fabi, J. P. (2019). Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. International Journal of Biological Macromolecules, 126, 170–178. https://doi.org/10.1016/j.ijbiomac.2018.12.191
- Ranganna, S. (1995). Hand book of analysis and quality control for fruits and vegetable products ( 2nd ed.). McGraw Hill publishing Co. Ltd.
- Ro, J., Kim, Y., Kim, H., Jang, S. B., Lee, H. J., Chakma, S., Jeong, J. H., & Lee, J. (2013). Antioxidative activity of pectin and its stabilizing effect on retinyl palmitate. The Korean Journal of Physiology & Pharmacology, 17(3), 197–201.
- Sahasrabudhe, N. M., Beukema, M., Tian, L., Troost, B., Scholte, J., Bruininx, E., Bruggeman, G., & De Vos, P. (2018). Dietary fiber pectin directly blocks toll-like receptor 2–1 and prevents doxorubicin-inducedileitis. Frontiers in Immunology, 9, 383. https://doi.org/10.3389/fimmu.2018.00383
- Salih, A. G., Le Quéré, J. M., & Drilleau, J. F. (2000). Action des acides hydroxycinnamiques libres et estérifiés sur la croissance des bactéries lactiques. Science des Aliments, 20, 537–560. https://doi.org/10.3166/sda.20.537-560
- Shi, C., Zhang, X. R., Sun, Y., Yang, M. C., Song, K. K., Zheng, Z. W., Chen, Y., Liu, X., Jia, Z., Dong, R., Cui, L., & Xia, X. (2016). Antimicrobial activity of ferulic acid against Cronobacter sakazakii and possible mechanism of action. Foodborne Pathogens and Disease, 13, 196–204. https://doi.org/10.1089/fpd.2015.1992
- Stead, D. (1993). The effect of hydroxycinnamic acids on the growth of wine-spoilage lactic acid bacteria. Journal of Applied Bacteriology, 75, 135–141. https://doi.org/10.1111/j.1365-2672.1993.tb02758.x
- Szymanska-Chargot, M., & Zdunek, A. (2013). Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophysics, 8(1), 29–42. https://doi.org/10.1007/s11483-012-9279-7
- Vanitha, T., & Khan, M. (2019). Role of pectin in food processing and packaing. In M. Masuelli (Ed.), Pectins—Extraction, purification, characterization and applications. Intech Open Publisher.
- Vogt, L. M., Sahasrabudhe, N. M., Ramasamy, U., Meyer, D., Pullens, G., Faas, M. M., Venema, K., Schols, H. A., & de Vos, P. (2016). The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. Journal of Functional Foods, 22, 398–407. https://doi.org/10.1016/j.jff.2016.02.002
- Wang, M., Wichienchot, S., He, X., Fu, X., Huang, Q., & Zhang, B. (2019). In vitro colonic fermentation of dietary fibres: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Science & Technology, 88, 1–9. https://doi.org/10.1016/j.tifs.2019.03.005
- Wikiera, A., Irla, M., & Mika, M. (2014). Prozdrowotne właściwości pektyn. Advances in Hygiene & Experimental Medicine/Postepy Higieny i Medycyny Doswiadczalnej, 68, 590–596. https://doi.org/10.5604/17322693.1102342
- Wu, C., Pan, L. L., Niu, W., Fang, X., Liang, W., Li, J., Li, H., Pan, X., Chen, W., Zhang, H., Lakey, J. R. T., Agerberth, B., de Vos, P., & Sun, J. (2019). Modulation of gut microbiota by low methoxyl pectin attenuates type 1 diabetes in non-obese diabetic mice. Frontiers in Immunology, 10, 1733. https://doi.org/10.3389/fimmu.2019.01733
- Zaitseva, O., Khudyakov, A., Sergushkina, M., Solomina, O., & Polezhaeva, T. (2020). Pectins as a universal medicine. Fitoterapia, 146, 104676. https://doi.org/10.1016/j.fitote.2020.104676
- Zhang, S., Hu, H., Wang, L., Liu, F., & Pan, S. (2018). Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chemistry, 244, 232–237. https://doi.org/10.1016/j.foodchem.2017.10.071
- Zhang, Z., Yang, P., & Zhao, J. (2022). Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health. Animal Nutrition, 9, 31–38. https://doi.org/10.1016/j.aninu.2021.08.004